Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
Cell Rep ; 43(5): 114149, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38678560

ABSTRACT

Loss of muscle mass is a feature of chronic illness and aging. Here, we report that skeletal muscle-specific thrombospondin-1 transgenic mice (Thbs1 Tg) have profound muscle atrophy with age-dependent decreases in exercise capacity and premature lethality. Mechanistically, Thbs1 activates transforming growth factor ß (TGFß)-Smad2/3 signaling, which also induces activating transcription factor 4 (ATF4) expression that together modulates the autophagy-lysosomal pathway (ALP) and ubiquitin-proteasome system (UPS) to facilitate muscle atrophy. Indeed, myofiber-specific inhibition of TGFß-receptor signaling represses the induction of ATF4, normalizes ALP and UPS, and partially restores muscle mass in Thbs1 Tg mice. Similarly, myofiber-specific deletion of Smad2 and Smad3 or the Atf4 gene antagonizes Thbs1-induced muscle atrophy. More importantly, Thbs1-/- mice show significantly reduced levels of denervation- and caloric restriction-mediated muscle atrophy, along with blunted TGFß-Smad3-ATF4 signaling. Thus, Thbs1-mediated TGFß-Smad3-ATF4 signaling in skeletal muscle regulates tissue rarefaction, suggesting a target for atrophy-based muscle diseases and sarcopenia with aging.


Subject(s)
Activating Transcription Factor 4 , Muscle, Skeletal , Muscular Atrophy , Signal Transduction , Smad2 Protein , Smad3 Protein , Thrombospondin 1 , Transforming Growth Factor beta , Animals , Male , Mice , Activating Transcription Factor 4/metabolism , Autophagy , Mice, Inbred C57BL , Mice, Transgenic , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Thrombospondin 1/metabolism , Thrombospondin 1/genetics , Transforming Growth Factor beta/metabolism
2.
Cells ; 12(17)2023 08 30.
Article in English | MEDLINE | ID: mdl-37681905

ABSTRACT

RATIONALE: The adult cardiac extracellular matrix (ECM) is largely comprised of type I collagen. In addition to serving as the primary structural support component of the cardiac ECM, type I collagen also provides an organizational platform for other ECM proteins, matricellular proteins, and signaling components that impact cellular stress sensing in vivo. OBJECTIVE: Here we investigated how the content and integrity of type I collagen affect cardiac structure function and response to injury. METHODS AND RESULTS: We generated and characterized Col1a2-/- mice using standard gene targeting. Col1a2-/- mice were viable, although by young adulthood their hearts showed alterations in ECM mechanical properties, as well as an unanticipated activation of cardiac fibroblasts and induction of a progressive fibrotic response. This included augmented TGFß activity, increases in fibroblast number, and progressive cardiac hypertrophy, with reduced functional performance by 9 months of age. Col1a2-loxP-targeted mice were also generated and crossed with the tamoxifen-inducible Postn-MerCreMer mice to delete the Col1a2 gene in myofibroblasts with pressure overload injury. Interestingly, while germline Col1a2-/- mice showed gradual pathologic hypertrophy and fibrosis with aging, the acute deletion of Col1a2 from activated adult myofibroblasts showed a loss of total collagen deposition with acute cardiac injury and an acute reduction in pressure overload-induce cardiac hypertrophy. However, this reduction in hypertrophy due to myofibroblast-specific Col1a2 deletion was lost after 2 and 6 weeks of pressure overload, as fibrotic deposition accumulated. CONCLUSIONS: Defective type I collagen in the heart alters the structural integrity of the ECM and leads to cardiomyopathy in adulthood, with fibroblast expansion, activation, and alternate fibrotic ECM deposition. However, acute inhibition of type I collagen production can have an anti-fibrotic and anti-hypertrophic effect.


Subject(s)
Cardiomyopathies , Collagen Type I , Animals , Mice , Cardiomegaly/genetics , Collagen Type I/genetics , Fibrosis
3.
Sci Adv ; 9(34): eadi2767, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37624892

ABSTRACT

Mitochondrial permeability transition pore (MPTP) formation contributes to ischemia-reperfusion injury in the heart and several degenerative diseases, including muscular dystrophy (MD). MD is a family of genetic disorders characterized by progressive muscle necrosis and premature death. It has been proposed that the MPTP has two molecular components, the adenine nucleotide translocase (ANT) family of proteins and an unknown component that requires the chaperone cyclophilin D (CypD) to activate. This model was examined in vivo by deleting the gene encoding ANT1 (Slc25a4) or CypD (Ppif) in a δ-sarcoglycan (Sgcd) gene-deleted mouse model of MD, revealing that dystrophic mice lacking Slc25a4 were partially protected from cell death and MD pathology. Dystrophic mice lacking both Slc25a4 and Ppif together were almost completely protected from necrotic cell death and MD disease. This study provides direct evidence that ANT1 and CypD are required MPTP components governing in vivo cell death, suggesting a previously unrecognized therapeutic approach in MD and other necrotic diseases.


Subject(s)
Muscular Dystrophies , Animals , Mice , Necrosis , Cell Death , Peptidyl-Prolyl Isomerase F , Disease Models, Animal
4.
Proc Natl Acad Sci U S A ; 120(19): e2213696120, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37126682

ABSTRACT

To better understand the genetic basis of heart disease, we identified a variant in the Flightless-I homolog (FLII) gene that generates a R1243H missense change and predisposes to cardiac remodeling across multiple previous human genome-wide association studies (GWAS). Since this gene is of unknown function in the mammalian heart we generated gain- and loss-of-function genetically altered mice, as well as knock-in mice with the syntenic R1245H amino acid substitution, which showed that Flii protein binds the sarcomeric actin thin filament and influences its length. Deletion of Flii from the heart, or mice with the R1245H amino acid substitution, show cardiomyopathy due to shortening of the actin thin filaments. Mechanistically, Flii is a known actin binding protein that we show associates with tropomodulin-1 (TMOD1) to regulate sarcomere thin filament length. Indeed, overexpression of leiomodin-2 in the heart, which lengthens the actin-containing thin filaments, partially rescued disease due to heart-specific deletion of Flii. Collectively, the identified FLII human variant likely increases cardiomyopathy risk through an alteration in sarcomere structure and associated contractile dynamics, like other sarcomere gene-based familial cardiomyopathies.


Subject(s)
Actins , Cardiomyopathies , Humans , Animals , Mice , Actins/metabolism , Sarcomeres/metabolism , Genome-Wide Association Study , Actin Cytoskeleton/metabolism , Cardiomyopathies/metabolism , Mammals/genetics , Microfilament Proteins/metabolism , Trans-Activators/metabolism , Tropomodulin/metabolism , Cytoskeletal Proteins/metabolism , Muscle Proteins/metabolism
5.
Front Physiol ; 14: 1054169, 2023.
Article in English | MEDLINE | ID: mdl-36733907

ABSTRACT

Introduction: The ribosomal protein L3-like (RPL3L) is a heart and skeletal muscle-specific ribosomal protein and paralogue of the more ubiquitously expressed RPL3 protein. Mutations in the human RPL3L gene are linked to childhood cardiomyopathy and age-related atrial fibrillation, yet the function of RPL3L in the mammalian heart remains unknown. Methods and Results: Here, we observed that mouse cardiac ventricles express RPL3 at birth, where it is gradually replaced by RPL3L in adulthood but re-expressed with induction of hypertrophy in adults. Rpl3l gene-deleted mice were generated to examine the role of this gene in the heart, although Rpl3l -/- mice showed no overt changes in cardiac structure or function at baseline or after pressure overload hypertrophy, likely because RPL3 expression was upregulated and maintained in adulthood. mRNA expression analysis and ribosome profiling failed to show differences between the hearts of Rpl3l null and wild type mice in adulthood. Moreover, ribosomes lacking RPL3L showed no differences in localization within cardiomyocytes compared to wild type controls, nor was there an alteration in cardiac tissue ultrastructure or mitochondrial function in adult Rpl3l -/- mice. Similarly, overexpression of either RPL3 or RPL3L with adeno-associated virus -9 in the hearts of mice did not cause discernable pathology. However, by 18 months of age Rpl3l -/- null mice had significantly smaller hearts compared to wild type littermates. Conclusion: Thus, deletion of Rpl3l forces maintenance of RPL3 expression within the heart that appears to fully compensate for the loss of RPL3L, although older Rpl3l -/- mice showed a mild but significant reduction in heart weight.

6.
Cell Stem Cell ; 30(1): 96-111.e6, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36516837

ABSTRACT

The efficacy and safety of gene-therapy strategies for indications like tissue damage hinge on precision; yet, current methods afford little spatial or temporal control of payload delivery. Here, we find that tissue-regeneration enhancer elements (TREEs) isolated from zebrafish can direct targeted, injury-associated gene expression from viral DNA vectors delivered systemically in small and large adult mammalian species. When employed in combination with CRISPR-based epigenome editing tools in mice, zebrafish TREEs stimulated or repressed the expression of endogenous genes after ischemic myocardial infarction. Intravenously delivered recombinant AAV vectors designed with a TREE to direct a constitutively active YAP factor boosted indicators of cardiac regeneration in mice and improved the function of the injured heart. Our findings establish the application of contextual enhancer elements as a potential therapeutic platform for spatiotemporally controlled tissue regeneration in mammals.


Subject(s)
Enhancer Elements, Genetic , Genetic Therapy , Heart , Myocardial Infarction , Myocytes, Cardiac , Regeneration , Animals , Mice , Cell Proliferation , Heart/physiology , Myocardial Infarction/genetics , Myocardial Infarction/therapy , Myocytes, Cardiac/metabolism , Zebrafish/genetics , Genetic Therapy/methods , Regeneration/genetics
8.
Nat Commun ; 12(1): 3928, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34168130

ABSTRACT

The thrombospondin (Thbs) family of secreted matricellular proteins are stress- and injury-induced mediators of cellular attachment dynamics and extracellular matrix protein production. Here we show that Thbs1, but not Thbs2, Thbs3 or Thbs4, induces lethal cardiac atrophy when overexpressed. Mechanistically, Thbs1 binds and activates the endoplasmic reticulum stress effector PERK, inducing its downstream transcription factor ATF4 and causing lethal autophagy-mediated cardiac atrophy. Antithetically, Thbs1-/- mice develop greater cardiac hypertrophy with pressure overload stimulation and show reduced fasting-induced atrophy. Deletion of Thbs1 effectors/receptors, including ATF6α, CD36 or CD47 does not diminish Thbs1-dependent cardiac atrophy. However, deletion of the gene encoding PERK in Thbs1 transgenic mice blunts the induction of ATF4 and autophagy, and largely corrects the lethal cardiac atrophy. Finally, overexpression of PERK or ATF4 using AAV9 gene-transfer similarly promotes cardiac atrophy and lethality. Hence, we identified Thbs1-mediated PERK-eIF2α-ATF4-induced autophagy as a critical regulator of cardiomyocyte size in the stressed heart.


Subject(s)
Activating Transcription Factor 4/metabolism , Myocardium/pathology , Thrombospondins/metabolism , eIF-2 Kinase/metabolism , Activating Transcription Factor 4/genetics , Animals , Atrophy , Autophagy/physiology , Cardiomegaly/genetics , Cardiomegaly/pathology , Endoplasmic Reticulum Stress/genetics , Eukaryotic Initiation Factor-2/metabolism , Gene Expression , Lysosomes/metabolism , Male , Mice, Transgenic , Myocytes, Cardiac/pathology , Proteolysis , Thrombospondins/genetics , eIF-2 Kinase/genetics
9.
Circ Res ; 127(3): 379-390, 2020 07 17.
Article in English | MEDLINE | ID: mdl-32299299

ABSTRACT

RATIONALE: Mitochondrial Ca2+ loading augments oxidative metabolism to match functional demands during times of increased work or injury. However, mitochondrial Ca2+ overload also directly causes mitochondrial rupture and cardiomyocyte death during ischemia-reperfusion injury by inducing mitochondrial permeability transition pore opening. The MCU (mitochondrial Ca2+ uniporter) mediates mitochondrial Ca2+ influx, and its activity is modulated by partner proteins in its molecular complex, including the MCUb subunit. OBJECTIVE: Here, we sought to examine the function of the MCUb subunit of the MCU-complex in regulating mitochondria Ca2+ influx dynamics, acute cardiac injury, and long-term adaptation after ischemic injury. METHODS AND RESULTS: Cardiomyocyte-specific MCUb overexpressing transgenic mice and Mcub gene-deleted (Mcub-/-) mice were generated to dissect the molecular function of this protein in the heart. We observed that MCUb protein is undetectable in the adult mouse heart at baseline, but mRNA and protein are induced after ischemia-reperfusion injury. MCUb overexpressing mice demonstrated inhibited mitochondrial Ca2+ uptake in cardiomyocytes and partial protection from ischemia-reperfusion injury by reducing mitochondrial permeability transition pore opening. Antithetically, deletion of the Mcub gene exacerbated pathological cardiac remodeling and infarct expansion after ischemic injury in association with greater mitochondrial Ca2+ uptake. Furthermore, hindlimb remote ischemic preconditioning induced MCUb expression in the heart, which was associated with decreased mitochondrial Ca2+ uptake, collectively suggesting that induction of MCUb protein in the heart is protective. Similarly, mouse embryonic fibroblasts from Mcub-/- mice were more sensitive to Ca2+ overload. CONCLUSIONS: Our studies suggest that Mcub is a protective cardiac inducible gene that reduces mitochondrial Ca2+ influx and permeability transition pore opening after ischemic injury to reduce ongoing pathological remodeling.


Subject(s)
Calcium/metabolism , Hindlimb/blood supply , Membrane Proteins/metabolism , Mitochondria, Heart/metabolism , Mitochondrial Proteins/metabolism , Myocardial Infarction/metabolism , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/metabolism , Ventricular Remodeling , Animals , Calcium Signaling , Cell Death , Cell Line , Disease Models, Animal , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Ischemic Preconditioning , Male , Membrane Proteins/genetics , Mice, Inbred C57BL , Mice, Knockout , Mitochondria, Heart/pathology , Mitochondrial Permeability Transition Pore/metabolism , Mitochondrial Proteins/genetics , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardial Infarction/prevention & control , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac/pathology
11.
Nature ; 577(7790): 405-409, 2020 01.
Article in English | MEDLINE | ID: mdl-31775156

ABSTRACT

Clinical trials using adult stem cells to regenerate damaged heart tissue continue to this day1,2, despite ongoing questions of efficacy and a lack of mechanistic understanding of the underlying biological effect3. The rationale for these cell therapy trials is derived from animal studies that show a modest but reproducible improvement in cardiac function in models of cardiac ischaemic injury4,5. Here we examine the mechanistic basis for cell therapy in mice after ischaemia-reperfusion injury, and find that-although heart function is enhanced-it is not associated with the production of new cardiomyocytes. Cell therapy improved heart function through an acute sterile immune response characterized by the temporal and regional induction of CCR2+ and CX3CR1+ macrophages. Intracardiac injection of two distinct types of adult stem cells, cells killed by freezing and thawing or a chemical inducer of the innate immune response all induced a similar regional accumulation of CCR2+ and CX3CR1+ macrophages, and provided functional rejuvenation to the heart after ischaemia-reperfusion injury. This selective macrophage response altered the activity of cardiac fibroblasts, reduced the extracellular matrix content in the border zone and enhanced the mechanical properties of the injured area. The functional benefit of cardiac cell therapy is thus due to an acute inflammatory-based wound-healing response that rejuvenates the infarcted area of the heart.


Subject(s)
Immunity, Innate , Myocytes, Cardiac/immunology , Stem Cell Transplantation , Stem Cells , Animals , Cell Differentiation , Female , Macrophages/immunology , Male , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/transplantation , Rejuvenation
12.
Sci Adv ; 5(8): eaaw4597, 2019 08.
Article in English | MEDLINE | ID: mdl-31489369

ABSTRACT

The mitochondrial permeability transition pore (MPTP) has resisted molecular identification. The original model of the MPTP that proposed the adenine nucleotide translocator (ANT) as the inner membrane pore-forming component was challenged when mitochondria from Ant1/2 double null mouse liver still had MPTP activity. Because mice express three Ant genes, we reinvestigated whether the ANTs comprise the MPTP. Liver mitochondria from Ant1, Ant2, and Ant4 deficient mice were highly refractory to Ca2+-induced MPTP formation, and when also given cyclosporine A (CsA), the MPTP was completely inhibited. Moreover, liver mitochondria from mice with quadruple deletion of Ant1, Ant2, Ant4, and Ppif (cyclophilin D, target of CsA) lacked Ca2+-induced MPTP formation. Inner-membrane patch clamping in mitochondria from Ant1, Ant2, and Ant4 triple null mouse embryonic fibroblasts showed a loss of MPTP activity. Our findings suggest a model for the MPTP consisting of two distinct molecular components: The ANTs and an unknown species requiring CypD.


Subject(s)
Adenine Nucleotides/genetics , Mitochondria/genetics , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Transmembrane Permeability-Driven Necrosis/genetics , Peptidyl-Prolyl Isomerase F/genetics , Sequence Deletion/genetics , Animals , Cells, Cultured , Female , Male , Mice , Mice, Knockout , Mitochondrial Permeability Transition Pore
13.
JCI Insight ; 52019 04 09.
Article in English | MEDLINE | ID: mdl-30964448

ABSTRACT

Mitogen-activated protein kinase (MAPK) signaling consists of an array of successively acting kinases. The extracellular signal-regulated kinases 1/2 (ERK1/2) are major components of the greater MAPK cascade that transduce growth factor signaling at the cell membrane. Here we investigated ERK1/2 signaling in skeletal muscle homeostasis and disease. Using mouse genetics, we observed that the muscle-specific expression of a constitutively active MEK1 mutant promotes greater ERK1/2 signaling that mediates fiber-type switching to a slow, oxidative phenotype with type I myosin heavy chain expression. Using a conditional and temporally regulated Cre strategy as well as Mapk1 (ERK2) and Mapk3 (ERK1) genetically targeted mice, MEK1-ERK2 signaling was shown to underlie this fast-to-slow fiber type switching in adult skeletal muscle as well as during development. Physiologic assessment of these activated MEK1-ERK1/2 mice showed enhanced metabolic activity and oxygen consumption with greater muscle fatigue resistance. Moreover, induction of MEK1-ERK1/2 signaling increased dystrophin and utrophin protein expression in a mouse model of limb-girdle muscle dystrophy and protected myofibers from damage. In summary, sustained MEK1-ERK1/2 activity in skeletal muscle produces a fast-to-slow fiber-type switch that protects from muscular dystrophy, suggesting a therapeutic approach to enhance the metabolic effectiveness of muscle and protect from dystrophic disease.


Subject(s)
MAP Kinase Signaling System/genetics , Muscle Fatigue/genetics , Muscle Fibers, Fast-Twitch/metabolism , Muscle Fibers, Slow-Twitch/metabolism , Muscle, Skeletal/metabolism , Muscular Dystrophies, Limb-Girdle/genetics , Oxygen Consumption/genetics , Animals , Disease Models, Animal , Dystrophin/metabolism , MAP Kinase Kinase 1/genetics , Mice , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 3/genetics , Muscular Dystrophies, Limb-Girdle/metabolism , Muscular Dystrophies, Limb-Girdle/physiopathology , Severity of Illness Index , Utrophin/metabolism
14.
J Biol Chem ; 294(22): 8918-8929, 2019 05 31.
Article in English | MEDLINE | ID: mdl-31006653

ABSTRACT

Valosin-containing protein (VCP), also known as p97, is an ATPase with diverse cellular functions, although the most highly characterized is targeting of misfolded or aggregated proteins to degradation pathways, including the endoplasmic reticulum-associated degradation (ERAD) pathway. However, how VCP functions in the heart has not been carefully examined despite the fact that human mutations in VCP cause Paget disease of bone and frontotemporal dementia, an autosomal dominant multisystem proteinopathy that includes disease in the heart, skeletal muscle, brain, and bone. Here we generated heart-specific transgenic mice overexpressing WT VCP or a VCPK524A mutant with deficient ATPase activity. Transgenic mice overexpressing WT VCP exhibit normal cardiac structure and function, whereas mutant VCP-overexpressing mice develop cardiomyopathy. Mechanistically, mutant VCP-overexpressing hearts up-regulate ERAD complex components and have elevated levels of ubiquitinated proteins prior to manifestation of cardiomyopathy, suggesting dysregulation of ERAD and inefficient clearance of proteins targeted for proteasomal degradation. The hearts of mutant VCP transgenic mice also exhibit profound defects in cardiomyocyte nuclear morphology with increased nuclear envelope proteins and nuclear lamins. Proteomics revealed overwhelming interactions of endogenous VCP with ribosomal, ribosome-associated, and RNA-binding proteins in the heart, and impairment of cardiac VCP activity resulted in aggregation of large ribosomal subunit proteins. These data identify multifactorial functions and diverse mechanisms whereby VCP regulates cardiomyocyte protein and RNA quality control that are critical for cardiac homeostasis, suggesting how human VCP mutations negatively affect the heart.


Subject(s)
Cardiomyopathies/pathology , Heart/physiology , Myocardium/metabolism , Valosin Containing Protein/metabolism , Animals , Cardiomyopathies/metabolism , Cells, Cultured , Endoplasmic Reticulum-Associated Degradation , Lamins/metabolism , Mice , Mice, Transgenic , Mutagenesis, Site-Directed , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Nuclear Proteins/metabolism , Protein Subunits/metabolism , RNA-Binding Proteins/metabolism , Rats , Ribosomal Proteins/metabolism , Ubiquitination , Valosin Containing Protein/genetics
15.
Nat Commun ; 10(1): 76, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30622267

ABSTRACT

Thrombospondins (Thbs) are a family of five secreted matricellular glycoproteins in vertebrates that broadly affect cell-matrix interaction. While Thbs4 is known to protect striated muscle from disease by enhancing sarcolemmal stability through increased integrin and dystroglycan attachment complexes, here we show that Thbs3 antithetically promotes sarcolemmal destabilization by reducing integrin function, augmenting disease-induced decompensation. Deletion of Thbs3 in mice enhances integrin membrane expression and membrane stability, protecting the heart from disease stimuli. Transgene-mediated overexpression of α7ß1D integrin in the heart ameliorates the disease predisposing effects of Thbs3 by augmenting sarcolemmal stability. Mechanistically, we show that mutating Thbs3 to contain the conserved RGD integrin binding domain normally found in Thbs4 and Thbs5 now rescues the defective expression of integrins on the sarcolemma. Thus, Thbs proteins mediate the intracellular processing of integrin plasma membrane attachment complexes to regulate the dynamics of cellular remodeling and membrane stability.


Subject(s)
Cardiomyopathies/pathology , Integrins/metabolism , Sarcolemma/pathology , Thrombospondins/metabolism , Animals , COS Cells , Cardiomyopathies/diagnostic imaging , Cardiomyopathies/etiology , Cells, Cultured , Chlorocebus aethiops , Disease Models, Animal , Dystroglycans/metabolism , Echocardiography , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Myocytes, Cardiac , Primary Cell Culture , Protein Interaction Domains and Motifs/genetics , Rats , Rats, Sprague-Dawley , Sarcolemma/metabolism , Thrombospondins/genetics
16.
J Am Heart Assoc ; 7(20): e010013, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30371263

ABSTRACT

Background Transforming growth factor beta ( TGF -ß) is an important cytokine in mediating the cardiac fibrosis that often accompanies pathogenic cardiac remodeling. Cardiomyocyte-specific expression of a mutant αB-crystallin (Cry ABR120G), which causes human desmin-related cardiomyopathy, results in significant cardiac fibrosis. During onset of fibrosis, fibroblasts are activated to the so-called myofibroblast state and TGF -ß binding mediates an essential signaling pathway underlying this process. Here, we test the hypothesis that fibroblast-based TGF -ß signaling can result in significant cardiac fibrosis in a disease model of cardiac proteotoxicity that has an exclusive cardiomyocyte-based etiology. Methods and Results Against the background of cardiomyocyte-restricted expression of Cry ABR120G, we have partially ablated TGF -ß signaling in cardiac myofibroblasts to observe whether cardiac fibrosis is reduced despite the ongoing pathogenic stimulus of Cry ABR120G production. Transgenic Cry ABR120G mice were crossed with mice containing a floxed allele of TGF -ß receptor 2 ( Tgfbr2 f/f). The double transgenic animals were subsequently crossed to another transgenic line in which Cre expression was driven from the periostin locus ( Postn) so that Tgfbr2 would be ablated with myofibroblast conversion. Structural and functional assays were then used to determine whether general fibrosis was affected and cardiac function rescued in Cry ABR120G mice lacking Tgfbr2 in the myofibroblasts. Ablation of myofibroblast specific TGF -ß signaling led to decreased morbidity in a proteotoxic disease resulting from cardiomyocyte autonomous expression of Cry ABR120G. Cardiac fibrosis was decreased and hypertrophy was also significantly attenuated, with a significant improvement in survival probability over time, even though the primary proteotoxic insult continued. Conclusions Myofibroblast-targeted knockdown of Tgfbr2 signaling resulted in reduced fibrosis and improved cardiac function, leading to improved probability of survival.


Subject(s)
Myocardium/pathology , Myofibroblasts/physiology , Transforming Growth Factor beta/physiology , Analysis of Variance , Animals , Cardiomyopathies/pathology , Disease Models, Animal , Female , Fibroblasts/physiology , Fibrosis/etiology , Heart Diseases/pathology , Male , Mice, Transgenic , Muscular Dystrophies/pathology , Myocytes, Cardiac/physiology , Receptor, Transforming Growth Factor-beta Type II/metabolism , Signal Transduction/physiology , alpha-Crystallin B Chain/metabolism
17.
Circulation ; 138(25): 2931-2939, 2018 12 18.
Article in English | MEDLINE | ID: mdl-29991486

ABSTRACT

BACKGROUND: The adult mammalian heart displays a cardiomyocyte turnover rate of ≈1%/y throughout postnatal life and after injuries such as myocardial infarction (MI), but the question of which cell types drive this low level of new cardiomyocyte formation remains contentious. Cardiac-resident stem cells marked by stem cell antigen-1 (Sca-1, gene name Ly6a) have been proposed as an important source of cardiomyocyte renewal. However, the in vivo contribution of endogenous Sca-1+ cells to the heart at baseline or after MI has not been investigated. METHODS: Here we generated Ly6a gene-targeted mice containing either a constitutive or an inducible Cre recombinase to perform genetic lineage tracing of Sca-1+ cells in vivo. RESULTS: We observed that the contribution of endogenous Sca-1+ cells to the cardiomyocyte population in the heart was <0.005% throughout all of cardiac development, with aging, or after MI. In contrast, Sca-1+ cells abundantly contributed to the cardiac vasculature in mice during physiological growth and in the post-MI heart during cardiac remodeling. Specifically, Sca-1 lineage-traced endothelial cells expanded postnatally in the mouse heart after birth and into adulthood. Moreover, pulse labeling of Sca-1+ cells with an inducible Ly6a-MerCreMer allele also revealed a preferential expansion of Sca-1 lineage-traced endothelial cells after MI injury in the mouse. CONCLUSIONS: Cardiac-resident Sca-1+ cells are not significant contributors to cardiomyocyte renewal in vivo. However, cardiac Sca-1+ cells represent a subset of vascular endothelial cells that expand postnatally with enhanced responsiveness to pathological stress in vivo.


Subject(s)
Adult Stem Cells/physiology , Aging/physiology , Antigens, Ly/metabolism , Endothelium, Vascular/physiology , Heart/physiology , Membrane Proteins/metabolism , Myocardial Infarction/physiopathology , Myocytes, Cardiac/physiology , Animals , Antigens, Ly/genetics , Cell Differentiation , Cell Lineage , Cells, Cultured , Coronary Vessels/surgery , Humans , Membrane Proteins/genetics , Mice , Mice, Transgenic , Models, Animal , Muscle Development , Myocardial Infarction/genetics
18.
Mol Cell Biol ; 38(14)2018 07 15.
Article in English | MEDLINE | ID: mdl-29712757

ABSTRACT

Thrombospondins are stress-inducible secreted glycoproteins with critical functions in tissue injury and healing. Thrombospondin-4 (Thbs4) is protective in cardiac and skeletal muscle, where it activates an adaptive endoplasmic reticulum (ER) stress response, induces expansion of the ER, and enhances sarcolemmal stability. However, it is unclear if Thbs4 has these protective functions from within the cell, from the extracellular matrix, or from the secretion process itself. In this study, we generated transgenic mice with cardiac cell-specific overexpression of a secretion-defective mutant of Thbs4 to evaluate its exclusive intracellular and secretion-dependent functions. Like wild-type Thbs4, the secretion-defective mutant upregulates the adaptive ER stress response and expands the ER and intracellular vesicles in cardiomyocytes. However, only the secretion-defective Thbs4 mutant produces cardiomyopathy with sarcolemmal weakness and rupture that is associated with reduced adhesion-forming glycoproteins in the membrane. Similarly, deletion of Thbs4 in the mdx mouse model of Duchenne muscular dystrophy enhances cardiomyocyte membrane instability and cardiomyopathy. Finally, overexpression of the secretion-defective Thbs4 mutant in Drosophila, but not wild-type Thbs4, impaired muscle function and sarcomere alignment. These results suggest that transit through the secretory pathway is required for Thbs4 to augment sarcolemmal stability, while ER stress induction and vesicular expansion mediated by Thbs4 are exclusively intracellular processes.


Subject(s)
Cardiomyopathies/etiology , Cardiomyopathies/metabolism , Myocytes, Cardiac/metabolism , Thrombospondins/metabolism , Animals , Animals, Genetically Modified , Cardiomyopathies/genetics , Cells, Cultured , Drosophila melanogaster/genetics , Endoplasmic Reticulum Stress , Humans , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Inbred mdx , Mice, Knockout , Mice, Transgenic , Muscular Dystrophy, Animal/genetics , Muscular Dystrophy, Animal/metabolism , Mutation , Myocytes, Cardiac/pathology , Rats , Sarcolemma/metabolism , Sarcolemma/pathology , Secretory Pathway , Thrombospondins/deficiency , Thrombospondins/genetics
19.
J Clin Invest ; 128(5): 2127-2143, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29664017

ABSTRACT

Fibroblasts are a dynamic cell type that achieve selective differentiated states to mediate acute wound healing and long-term tissue remodeling with scarring. With myocardial infarction injury, cardiomyocytes are replaced by secreted extracellular matrix proteins produced by proliferating and differentiating fibroblasts. Here, we employed 3 different mouse lineage-tracing models and stage-specific gene profiling to phenotypically analyze and classify resident cardiac fibroblast dynamics during myocardial infarction injury and stable scar formation. Fibroblasts were activated and highly proliferative, reaching a maximum rate within 2 to 4 days after infarction injury, at which point they expanded 3.5-fold and were maintained long term. By 3 to 7 days, these cells differentiated into myofibroblasts that secreted abundant extracellular matrix proteins and expressed smooth muscle α-actin to structurally support the necrotic area. By 7 to 10 days, myofibroblasts lost proliferative ability and smooth muscle α-actin expression as the collagen-containing extracellular matrix and scar fully matured. However, these same lineage-traced initial fibroblasts persisted within the scar, achieving a new molecular and stable differentiated state referred to as a matrifibrocyte, which was also observed in the scars of human hearts. These cells express common and unique extracellular matrix and tendon genes that are more specialized to support the mature scar.


Subject(s)
Cell Differentiation , Cicatrix/metabolism , Extracellular Matrix/metabolism , Myocardial Infarction/metabolism , Myocardium/metabolism , Myofibroblasts/metabolism , Animals , Cicatrix/pathology , Extracellular Matrix/pathology , Extracellular Matrix Proteins/metabolism , Female , Humans , Male , Mice , Myoblasts, Cardiac/metabolism , Myoblasts, Cardiac/pathology , Myocardial Infarction/pathology , Myocardium/pathology , Myofibroblasts/pathology
20.
Circulation ; 138(12): 1236-1252, 2018 09 18.
Article in English | MEDLINE | ID: mdl-29653926

ABSTRACT

BACKGROUND: Fibronectin (FN) polymerization is necessary for collagen matrix deposition and is a key contributor to increased abundance of cardiac myofibroblasts (MFs) after cardiac injury. We hypothesized that interfering with FN polymerization or its genetic ablation in fibroblasts would attenuate MF and fibrosis and improve cardiac function after ischemia/reperfusion (I/R) injury. METHODS: Mouse and human MFs were used to assess the impact of the FN polymerization inhibitor (pUR4) in attenuating pathological cellular features such as proliferation, migration, extracellular matrix deposition, and associated mechanisms. To evaluate the therapeutic potential of inhibiting FN polymerization in vivo, wild-type mice received daily intraperitoneal injections of either pUR4 or control peptide (III-11C) immediately after cardiac surgery for 7 consecutive days. Mice were analyzed 7 days after I/R to assess MF markers and inflammatory cell infiltration or 4 weeks after I/R to evaluate long-term effects of FN inhibition on cardiac function and fibrosis. Furthermore, inducible, fibroblast-restricted, FN gene-ablated (Tcf21MerCreMer; Fnflox) mice were used to evaluate cell specificity of FN expression and polymerization in the heart. RESULTS: pUR4 administration on activated MFs reduced FN and collagen deposition into the extracellular matrix and attenuated cell proliferation, likely mediated through decreased c-myc signaling. pUR4 also ameliorated fibroblast migration accompanied by increased ß1 integrin internalization and reduced levels of phosphorylated focal adhesion kinase protein. In vivo, daily administration of pUR4 for 7 days after I/R significantly reduced MF markers and neutrophil infiltration. This treatment regimen also significantly attenuated myocardial dysfunction, pathological cardiac remodeling, and fibrosis up to 4 weeks after I/R. Last, inducible ablation of FN in fibroblasts after I/R resulted in significant functional cardioprotection with reduced hypertrophy and fibrosis. The addition of pUR4 to the FN-ablated mice did not confer further cardioprotection, suggesting that the salutary effects of inhibiting FN polymerization may be mediated largely through effects on FN secreted from the cardiac fibroblast lineage. CONCLUSIONS: Inhibiting FN polymerization or cardiac fibroblast gene expression attenuates pathological properties of MFs in vitro and ameliorates adverse cardiac remodeling and fibrosis in an in vivo model of heart failure. Interfering with FN polymerization may be a new therapeutic strategy for treating cardiac fibrosis and heart failure.


Subject(s)
Fibronectins/antagonists & inhibitors , Heart Failure/drug therapy , Myocardial Reperfusion Injury/drug therapy , Myofibroblasts/drug effects , Peptide Fragments/pharmacology , Ventricular Function, Left/drug effects , Ventricular Remodeling/drug effects , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Proliferation/drug effects , Cells, Cultured , Collagen/metabolism , Disease Models, Animal , Fibronectins/genetics , Fibronectins/metabolism , Fibrosis , Focal Adhesion Kinase 1/metabolism , Heart Failure/metabolism , Heart Failure/pathology , Heart Failure/physiopathology , Humans , Integrin beta1/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Myofibroblasts/metabolism , Myofibroblasts/pathology , Neutrophil Infiltration/drug effects , Phosphorylation , Polymerization , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...