Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 146(11): 7708-7722, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38457782

ABSTRACT

Developing new antibiotics and delivery strategies is of critical importance for treating infections caused by Gram-negative bacterial pathogens. Hijacking bacterial iron uptake machinery, such as that of the siderophore enterobactin (Ent), represents one promising approach toward these goals. Here, we report a novel Ent-inspired siderophore-antibiotic conjugate (SAC) employing an alternative siderophore moiety as the delivery vector and demonstrate the potency of our SACs harboring the ß-lactam antibiotic ampicillin (Amp) against multiple pathogenic Gram-negative bacterial strains. We establish the ability of N,N',N''-(nitrilotris(ethane-2,1-diyl))tris(2,3-dihydroxybenzamide) (TRENCAM, hereafter TC), a synthetic mimic of Ent, to facilitate drug delivery across the outer membrane (OM) of Gram-negative pathogens. Conjugation of Amp to a new monofunctionalized TC scaffold affords TC-Amp, which displays markedly enhanced antibacterial activity against the gastrointestinal pathogen Salmonella enterica serovar Typhimurium (STm) compared with unmodified Amp. Bacterial uptake, antibiotic susceptibility, and microscopy studies with STm show that the TC moiety facilitates TC-Amp uptake by the OM receptors FepA and IroN and that the Amp warhead inhibits penicillin-binding proteins. Moreover, TC-Amp achieves targeted activity, selectively killing STm in the presence of a commensal lactobacillus. Remarkably, we uncover that TC-Amp and its Ent-based predecessor Ent-Amp achieve enhanced antibacterial activity against diverse Gram-negative ESKAPE pathogens that express Ent uptake machinery, including strains that possess intrinsic ß-lactam resistance. TC-Amp and Ent-Amp exhibit potency comparable to that of the FDA-approved SAC cefiderocol against Gram-negative pathogens. These results demonstrate the effective application of native and appropriately designed nonnative siderophores as vectors for drug delivery across the OM of multiple Gram-negative bacterial pathogens.


Subject(s)
Siderophores , beta-Lactams , Siderophores/pharmacology , beta-Lactams/pharmacology , Lactams , Anti-Bacterial Agents/pharmacology , Enterobactin/pharmacology , Enterobactin/metabolism , Gram-Negative Bacteria , Iron
2.
J Am Chem Soc ; 145(12): 6871-6879, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36920018

ABSTRACT

Many forms of anemia are caused or complicated by pathologic restriction of iron (Fe). Chronic inflammation and certain genetic mutations decrease the activity of ferroportin, the only Fe-exporter protein, so that endogenously recycled or nutritionally absorbed Fe cannot be exported to the extracellular Fe carrier protein transferrin for delivery to the bone marrow. Diminished ferroportin activity renders anemia correction challenging as Fe administered intravenously or through nutritional supplementation is trafficked through the ferroportin-transferrin axis. Utilizing judicious application of coordination chemistry principles, we designed an Fe complex (Fe-BBG) with solution thermodynamics and Fe dissociation kinetics optimized to replenish the transferrin-Fe pool rapidly, directly, and with precision. Fe-BBG is unreactive under conditions designed to force redox cycling and production of reactive oxygen species. The BBG ligand has a low affinity for divalent metal ions and does not compete for binding of other endogenously present ions including Cu and Zn. Treatment with Fe-BBG confers anemia correction in a mouse model of iron-refractory iron-deficiency anemia. Repeated exposure to Fe-BBG did not cause adverse clinical chemistry changes or trigger the expression of genes related to oxidative stress or inflammation. Fe-BBG represents the first entry in a promising new class of transferrin-targeted Fe replacement drugs.


Subject(s)
Anemia, Iron-Deficiency , Anemia , Animals , Mice , Iron/metabolism , Transferrin , Inflammation
3.
mBio ; 13(5): e0218422, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36094114

ABSTRACT

Inflammatory bowel diseases (IBD) are characterized by chronic inflammation of the gastrointestinal tract and profound alterations to the gut microbiome. Adherent-invasive Escherichia coli (AIEC) is a mucosa-associated pathobiont that colonizes the gut of patients with Crohn's disease, a form of IBD. Because AIEC exacerbates gut inflammation, strategies to reduce the AIEC bloom during colitis are highly desirable. To thrive in the inflamed gut, Enterobacteriaceae acquire the essential metal nutrient iron by producing and releasing siderophores. Here, we implemented an immunization-based strategy to target the siderophores enterobactin and its glucosylated derivative salmochelin to reduce the AIEC bloom in the inflamed gut. Using chemical (dextran sulfate sodium) and genetic (Il10-/- mice) IBD mouse models, we showed that immunization with enterobactin conjugated to the mucosal adjuvant cholera toxin subunit B potently elicited mucosal and serum antibodies against these siderophores. Siderophore-immunized mice exhibited lower AIEC gut colonization, diminished AIEC association with the gut mucosa, and reduced colitis severity. Moreover, Peyer's patches and the colonic lamina propria harbored enterobactin-specific B cells that could be identified by flow cytometry. The beneficial effect of siderophore immunization was primarily B cell-dependent because immunized muMT-/- mice, which lack mature B lymphocytes, were not protected during AIEC infection. Collectively, our study identified siderophores as a potential therapeutic target to reduce AIEC colonization and its association with the gut mucosa, which ultimately may reduce colitis exacerbation. Moreover, this work provides the foundation for developing monoclonal antibodies against siderophores, which could provide a narrow-spectrum strategy to target the AIEC bloom in Crohn's disease patients. IMPORTANCE Adherent-invasive Escherichia coli (AIEC) is abnormally prevalent in patients with ileal Crohn's disease and exacerbates intestinal inflammation, but treatment strategies that selectively target AIEC are unavailable. Iron is an essential micronutrient for most living organisms, and bacterial pathogens have evolved sophisticated strategies to capture iron from the host environment. AIEC produces siderophores, small, secreted molecules with a high affinity for iron. Here, we showed that immunization to elicit antibodies against siderophores promoted a reduction of the AIEC bloom, interfered with AIEC association with the mucosa, and mitigated colitis in experimental mouse models. We also established a flow cytometry-based approach to visualize and isolate siderophore-specific B cells, a prerequisite for engineering monoclonal antibodies against these molecules. Together, this work could lead to a more selective and antibiotic-sparing strategy to target AIEC in Crohn's disease patients.


Subject(s)
Colitis , Crohn Disease , Escherichia coli Infections , Inflammatory Bowel Diseases , Mice , Animals , Siderophores , Crohn Disease/microbiology , Interleukin-10 , Enterobactin , Dextran Sulfate , Cholera Toxin , Escherichia coli/genetics , Bacterial Adhesion , Colitis/prevention & control , Colitis/microbiology , Intestinal Mucosa/microbiology , Inflammation/complications , Inflammatory Bowel Diseases/complications , Immunization , Anti-Bacterial Agents/pharmacology , Iron , Antibodies, Monoclonal/pharmacology , Micronutrients
4.
Chem Sci ; 12(11): 4041-4056, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-34163675

ABSTRACT

The design and synthesis of narrow-spectrum antibiotics that target a specific bacterial strain, species, or group of species is a promising strategy for treating bacterial infections when the causative agent is known. In this work, we report the synthesis and evaluation of four new siderophore-ß-lactam conjugates where the broad-spectrum ß-lactam antibiotics cephalexin (Lex) and meropenem (Mem) are covalently attached to either enterobactin (Ent) or diglucosylated Ent (DGE) via a stable polyethylene glycol (PEG3) linker. These siderophore-ß-lactam conjugates showed enhanced minimum inhibitory concentrations against Escherichia coli compared to the parent antibiotics. Uptake studies with uropathogenic E. coli CFT073 demonstrated that the DGE-ß-lactams target the pathogen-associated catecholate siderophore receptor IroN. A comparative analysis of siderophore-ß-lactams harboring ampicillin (Amp), Lex and Mem indicated that the DGE-Mem conjugate is advantageous because it targets IroN and exhibits low minimum inhibitory concentrations, fast time-kill kinetics, and enhanced stability to serine ß-lactamases. Phase-contrast and fluorescence imaging of E. coli treated with the siderophore-ß-lactam conjugates revealed cellular morphologies consistent with the inhibition of penicillin-binding proteins PBP3 (Ent/DGE-Amp/Lex) and PBP2 (Ent/DGE-Mem). Overall, this work illuminates the uptake and cell-killing activity of Ent- and DGE-ß-lactam conjugates against E. coli and supports that native siderophore scaffolds provide the opportunity for narrowing the activity spectrum of antibiotics in clinical use and targeting pathogenicity.

5.
ACS Infect Dis ; 7(5): 1248-1259, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33691061

ABSTRACT

The pathogen Salmonella enterica is a leading cause of infection worldwide. Nontyphoidal Salmonella (NTS) serovars typically cause inflammatory diarrhea in healthy individuals, and can cause bacteremia in immunocompromised patients, children, and the elderly. Management of NTS infection poses a challenge because antibiotic treatment prolongs fecal shedding of the pathogen and is thus not recommended for most patients. In recent years, the emergence of antibiotic resistance in NTS has also become a major issue. Thus, new therapeutic strategies to target NTS are needed. Here, we evaluated whether six siderophore-ß-lactam conjugates based on enterobactin (Ent) and salmochelin S4 (digulcosylated Ent, DGE) provide antimicrobial activity against the two highly prevalent NTS serovars Typhimurium and Enteritidis by targeting the siderophore receptors FepA and/or IroN. The conjugates showed 10- to 1000-fold lower minimum inhibitory concentrations against both serovars Typhimurium and Enteritidis compared to the parent antibiotics under iron limitation and were recognized and transported by FepA and/or IroN. NTS treated with the Ent/DGE-ß-lactam conjugates exhibited aberrant cellular morphologies suggesting inhibition of penicillin-binding proteins, and the conjugates selectively killed NTS in coculture with Staphylococcus aureus. Lastly, the DGE-based conjugates proved to be effective at inhibiting growth of NTS in the presence of the Ent-sequestering protein lipocalin-2. This work describes the successful use of siderophore-antibiotic conjugates against NTS and highlights the opportunity for narrowing the activity spectrum of antibiotics by using Ent and DGE to target enteric bacterial pathogens.


Subject(s)
Anti-Bacterial Agents , Enterobactin , Glucosides , Salmonella/drug effects , Anti-Bacterial Agents/pharmacology , Enterobactin/analogs & derivatives , beta-Lactams
6.
J Infect Dis ; 223(12 Suppl 2): S307-S313, 2021 06 16.
Article in English | MEDLINE | ID: mdl-33330928

ABSTRACT

Infections caused by Gram-negative bacteria can be challenging to treat due to the outer membrane permeability barrier and the increasing emergence of antibiotic resistance. During infection, Gram-negative pathogens must acquire iron, an essential nutrient, in the host. Many Gram-negative bacteria utilize sophisticated iron acquisition machineries based on siderophores, small molecules that bind iron with high affinity. In this review, we provide an overview of siderophore-mediated iron acquisition in Enterobacteriaceae and show how these systems provide a foundation for the conceptualization and development of approaches to prevent and/or treat bacterial infections. Differences between the siderophore-based iron uptake machineries of pathogenic Enterobacteriaceae and commensal microbes may lead to the development of selective "Trojan-horse" antimicrobials and immunization strategies that will not harm the host microbiota.


Subject(s)
Anti-Bacterial Agents/metabolism , Enterobacteriaceae/drug effects , Iron/metabolism , Siderophores/metabolism , Animals , Bacteriocins/metabolism , Bacteriocins/pharmacology , Enterobacteriaceae/growth & development , Enterobacteriaceae/metabolism , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/growth & development , Gram-Negative Bacteria/metabolism , Humans , Immunization , Microbiota/drug effects , Siderophores/immunology
7.
J Phys Chem B ; 124(35): 7544-7556, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32790374

ABSTRACT

Peptide nucleic acids (PNAs) are a promising group of synthetic analogues of DNA and RNA that offer several distinct advantages over the naturally occurring nucleic acids for applications in biosensing, drug delivery, and nanoelectronics. Because of its structural differences from DNA/RNA, methods to analyze and assess the structure, conformations, and dynamics are needed. In this work, we develop synergistic techniques for the study of the PNA conformation. We use CuQ2, a Cu2+ complex with 8-hydroxyquinoline (HQ), as an alternative base pair and as a spin label in electron paramagnetic resonance (EPR) distance methods. We use molecular dynamics (MD) simulations with newly developed force field parameters for the spin labels to interpret the distance constraints determined by EPR. We complement these methods by UV-vis and circular dichroism measurements and assess the efficacy of the Cu2+ label on a PNA duplex whose backbone is based on aminoethylglycine and a duplex with a hydroxymethyl backbone modification. We show that the Cu2+ label functions efficiently within the standard PNA and the hydroxymethyl-modified PNA and that the MD parameters may be used to accurately reproduce our EPR findings. Through the combination of EPR and MD, we gain new insights into the PNA structure and conformations as well as into the mechanism of orientational selectivity in Cu2+ EPR at X-band. These results present for the first time a rigid Cu2+ spin label used for EPR distance measurements in PNA and the accompanying MD force fields for the spin label. Our studies also reveal that the spin labels have a low impact on the structure of the PNA duplexes. The combined MD and EPR approach represents an important new tool for the characterization of the PNA duplex structure and provides valuable information to aid in the rational application of PNA at large.


Subject(s)
Peptide Nucleic Acids , Electron Spin Resonance Spectroscopy , Molecular Conformation , Molecular Dynamics Simulation , Spin Labels
8.
Chimia (Aarau) ; 72(6): 368-374, 2018 Jun 27.
Article in English | MEDLINE | ID: mdl-29941070

ABSTRACT

Peptide nucleic acid (PNA) is a synthetic analogue of DNA in which the natural nucleobases A, G, C, and T are linked to an achiral, charge neutral, pseudopeptide backbone. PNA strands can form double helices similar to DNA whose helical sense can be modulated by applying the 'sergeants-and-soldiers' principle. Attachment of a chiral amino acid (sergeant) at the C-terminus of PNA leads to the amplification of chirality of the sergeant onto the achiral PNA monomers (soldiers), resulting in an enantiomeric excess of either left- or right-handed PNA duplexes. In the present study we looked at the effect of an achiral N-terminal terpyridine (soldier) on the helicity of the double helix that contains L-lysine. We have found that terpyridine interferes with the chiral induction effect of the L-lysines, an effect that can be reverted upon coordination of Cu2+ ions to terpyridine.


Subject(s)
Peptide Nucleic Acids/chemistry , Circular Dichroism , Spectrophotometry, Ultraviolet , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...