Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Iran J Basic Med Sci ; 27(7): 868-878, 2024.
Article in English | MEDLINE | ID: mdl-38800010

ABSTRACT

Objectives: Skin aging is a degenerative process that can be induced by UV irradiation. UV radiation can produce reactive oxidate stress which causes premature aging. This study aims to examine the antiaging potential of secretome gel (SC) from human Wharton Jelly Mesenchymal Stem Cells (hWJ-MSCs) in a UVB-induced mice model. Materials and Methods: The secretome was obtained from hWJ-MSCs and made in gel form. Male mice were radiated by UVB for 15 min twice daily for 14 days. The gel was topically applied to the mice's dorsal skin. Two treatments of secretome gel: secretome 1 is applied once and secretome 2 is applied twice daily after UVB radiation. TGF-ß1, IL-10, and IL-18 gene expression was determined using RT-PCR. Hematoxylin Eosin staining was used to observe the inflammation and collagen density of skin tissue. An immunohistochemistry assay was used to analyze the protein expression of P53, COL4A1, MMP-2, and MMP-13. The data were statistically analyzed using the ANOVA test followed by the Tukey post hoc test (P<0.05). Results: UVB induction caused loss of collagen, increasing inflammation and high expression of aging mediators. SC increased the gene expression of TGF-ß1 and IL-10 and decreased IL-18 gene expression. Histopathological tests showed that SG increased collagen density, lowered inflammation, and repaired cell damage in skin tissue. Immunohistochemistry test showed that SC decreased MMP-2, MMP-13, and P53 expression, in contrast, increased COL4A1. Conclusion: The secretome gel of hWJ-MSCs showed antiaging activities with potential for preventing and curing skin aging.

2.
Avicenna J Med Biotechnol ; 16(1): 57-65, 2024.
Article in English | MEDLINE | ID: mdl-38605739

ABSTRACT

Background: Acute Respiratory Distress Syndrome (ARDS) is a severe lung inflammatory condition that has the capacity to impair gas exchange and lead to hypoxemia. This condition is found to have been one of the most prevalent in patients of COVID-19 with a more serious condition. Green tea (Camellia sinensis L.) contains polyphenols that possess many health benefits. The purpose of this study was to assess the anti-inflammatory activities of green tea extract in Lipopolysaccharide (LPS)-induced lung cells as ARDS cells model. Methods: In this study, rat lung cells (L2) were induced by LPS to mimic the inflammation observed in ARDS and later treated with green tea extract. Pro-inflammatory cytokines such as Interleukin (IL)-12, C-Reactive Protein (CRP) as well as Tumor Necrosis Factor-α (TNF-α) were investigated using the ELISA method. Gene expression of NOD-Like Receptor Protein 3 (NLRP-3), Receptor for Advanced Glycation End-product (RAGE), Toll-like Receptor-4 (TLR-4), and Nuclear Factor-kappa B (NF-κB) were evaluated by qRTPCR. Apoptotic cells were measured using flow cytometry. Results: The results showed that green tea extract treatment can reduce inflammation by suppressing gene expressions of NF-κB, NLRP-3, TLR-4, and RAGE, as well as pro-inflammatory cytokines such as IL-12, TNF-α, and CRP, an acute phase protein. Apoptosis levels of inflamed cells also found to be lowered when green tea extract was administered; thus, also increasing live cells compared to non-treated cells. Conclusion: These findings could lead to the future development of supplements from green tea to help alleviate ARDS symptoms, especially during critical moments such as the current pandemic.

3.
Pak J Biol Sci ; 26(10): 516-528, 2023 Sep.
Article in English | MEDLINE | ID: mdl-38110557

ABSTRACT

<b>Background and Objective:</b> Paracetamol does not cause toxic effects if given in therapeutic doses, namely below 4 g per day. Use of paracetamol at a dose of more than 4 g per day can result in hepatotoxicity. This study aims to compare the hepatoprotector potency of the ethanol extract of soursop stem bark (<i>A. muricata</i>) against the enzyme activity of SGOT and SGPT in rats induced by toxic doses of paracetamol. <b>Materials and Methods:</b> A Completely Randomized Design (CRD) comprised of 6 treatment groups and 3 replications. Total 27 white male rats were induced hepatotoxicity with 1350 mg of paracetamol on the 7th day, except for normal control (K0) which was given aquadest. The tested animals received akuades as the negative control (K-) 11.34 mg kg<sup>1</sup> b.wt., of Hepa-Q as the positive control (K+), ethanol extract stem bark <i>Annona muricata</i> at a dose of 150 mg kg<sup>1</sup> BB (P1), 300 mg kg<sup>1</sup> BB (P2) and 600 mg kg<sup>1</sup> BB (P3). <b>Results:</b> There was a significant difference (p<0.05) in the levels of SGOT and SGPT after giving ethanol extract of soursop (<i>A. muricata</i>) stem bark. The best treatment for reducing SGOT and SGPT levels in rats induced by paracetamol was the administration of ethanol extract of <i>A. muricata</i> stem bark at a dose of 600 mg kg<sup>1</sup> BB. <b>Conclusion:</b> Based on the results of the study, it was concluded that all ethanol extract of <i>Annona muricata</i> L. stem bark (EEAMSB) doses had the potential to reduce the levels of AST and ALT in paracetamol-induced rats.


Subject(s)
Annona , Chemical and Drug Induced Liver Injury , Rats , Male , Animals , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Ethanol , Acetaminophen/toxicity , Alanine Transaminase , Plant Bark , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/prevention & control , Aspartate Aminotransferases
4.
Comput Biol Chem ; 105: 107898, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37247574

ABSTRACT

Coronavirus disease is caused by the pathogen severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) known as COVID-19. COVID-19 has caused the deaths of 6,541,936 people worldwide as of September 27th, 2022. SARS-CoV-2 severity is determined by a cytokine storm condition, in which the innate immune system creates an unregulated and excessive production of pro-inflammatory such IL-1, IL-6, NF Kappa B, and TNF alpha signaling molecules known as cytokines. The patient died due to respiratory organ failure and an acute complication because of the hyper-inflammation phenomenon. Green tea, soybean, and guava bioactive substances are well-known to act as anti-inflammation, and antioxidants become prospective COVID-19 illness candidates to overcome the cytokine storm. Our research aims to discover the bioactivity, bioavailability, and protein targets of green tea, soybean, and guava bioactive compounds as anti-inflammatory agents via the TNF inhibition pathway. The experiment uses in silico methods and harnesses the accessible datasets. Samples of 3D structure and SMILE identity of bioactive compounds were retrieved from the KNApSAck and Dr Duke databases. The QSAR analysis was done by WAY2DRUG web server, while the ADME prediction was performed using SWISSADME web server, following the Lipinsky rules of drugs. The target protein and protein-protein interaction were analyzed using STRING DB and Cytoscape software. Lastly, molecular docking was performed using Autodock 4.2 and visualization with BioVia Discovery Studio 2019. The identified study showed the potential of green tea, soybean, and guava's bioactive compounds have played an important role as anti-inflammation agents through TNF inhibitor pathway.


Subject(s)
COVID-19 , Psidium , Humans , SARS-CoV-2 , Glycine max , Cytokine Release Syndrome/drug therapy , Tea , Molecular Docking Simulation , Inflammation/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
5.
Natural Product Sciences ; : 193-199, 2023.
Article in English | WPRIM (Western Pacific) | ID: wpr-1041789

ABSTRACT

Dyslipidemia is a condition of fat metabolism disorders with increased levels of total cholesterol (CHOL), triglycerides (TG), low-density lipoprotein (LDL), and low high-density lipoprotein (HDL). Dyslipidemia is often found in patients with type 2 diabetes mellitus (DMT2) with a higher risk of cardiovascular disease.The extract of butterfly pea (Clitoria ternatea L.) (CTE), exhibits therapeutic action like antioxidant, antiinflammatory and antidiabetic properties. This study examined the antidiabetic potential of CTE in rat models of dyslipidemia and DM. Rats were fed nicotinamide (NA) and streptozotocin (STZ) to induce DMT2 after a 28-day high-fat diet, and the rats were given with CTE at 200, 400, 800 mg/kg body weight (BW), glibenclamide, and simvastatin for 28 days. Suppressor of mothers against decapentaplegic homolog 3 (SMAD3), and SMAD4 were assayed by immunohistochemistry (IHC), regenerating family member 1 alfa (REG1A), REG1B and glucagon gene expression were measured by quantitative reverse transcription polymerase chain reaction (RTqPCR) body weight was measured weekly. CTE at a dose of 800 mg/kg BW was the most active to increase body weight, and decrease SMAD3, SMAD4 protein expression, glucagon, REG1A, REG1B genes expression in dyslipidemia and DM rat model. CTE has potency antidiabetic activities in dyslipidemia and DM rat mode

6.
PeerJ ; 10: e13257, 2022.
Article in English | MEDLINE | ID: mdl-35673387

ABSTRACT

Background: Chronic kidney disease (CKD) happens due to decreasing kidney function. Inflammation and oxidative stress have been shown to result in the progression of CKD. Quercetin is widely known to have various bioactivities including antioxidant, anticancer, and anti-inflammatory activities. Objective: To evaluate the activity of quercetin to inhibit inflammation, stress oxidative, and fibrosis on CKD cells model (mouse mesangial cells induced by glucose). Methods and Material: The SV40 MES 13 cells were plated in a 6-well plate with cell density at 5,000 cells/well. The medium had been substituted for 3 days with a glucose-induced medium with a concentration of 20 mM. Quercetin was added with 50, 10, and 5 µg/mL concentrations. The negative control was the untreated cell. The levels of TGF-ß1, TNF-α, and MDA were determined using ELISA KIT. The gene expressions of the SMAD7, SMAD3, SMAD2, and SMAD4 were analyzed using qRT-PCR. Results: Glucose can lead to an increase in inflammatory cytokines TNF-α, TGF-ß1, MDA as well as the expressions of the SMAD2, SMAD3, SMAD4, and a decrease in SMAD7. Quercetin caused the reduction of TNF-α, TGF-ß1, MDA as well as the expression of the SMAD2, SMAD3, SMAD4, and increased SMAD7. Conclusion: Quercetin has anti-inflammation, antioxidant, antifibrosis activity in the CKD cells model. Thus, quercetin is a promising substance for CKD therapy and further research is needed to prove this in CKD animal model.


Subject(s)
Renal Insufficiency, Chronic , Transforming Growth Factor beta1 , Mice , Animals , Transforming Growth Factor beta1/genetics , Mesangial Cells/metabolism , Quercetin/pharmacology , Antioxidants/pharmacology , Tumor Necrosis Factor-alpha/genetics , Renal Insufficiency, Chronic/drug therapy , Inflammation/drug therapy , Oxidative Stress
7.
J Tradit Complement Med ; 12(4): 426-435, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35747350

ABSTRACT

Background and aim: Cis-Diamminedichloroplatinum (II) (Cisplatin) is one of the most synthetic anticancer drug but have several adverse effects and one of them is acute ren failure. Cisplatin can induce nephrotoxicity occur via the toxic generation of reactive oxygen species (ROS). Black soybean (Glycine max L. Merr.) has been reported contain high levels of phenolics and anthocyanins that has antioxidant activity. This study aims to determine the effect of ethanol extract of black soybean (EEBS) against cisplatin-induced nephrotoxicity in rats. Experimental procedure: Cisplatin-induced nephrotoxicity rats treated with EEBS and the blood samples taken on days 0, 9, and 18. The effects of EEBS was evaluated by determining Interferon-γ (IFN-γ), Caspase-3 (Casp-3), and Interleukin-1ß (IL-1ß) expression using immunohistochemistry (IHC), blood urea nitrogen (BUN), Uric Acid (UA) content and catalase (CAT) content in the blood plasma with colorimetric assay kit. Results and conclusion: Based on the results, EEBS treatment had successfully reduced pro-inflammatory cytokines IL-1ß and IFN-γ, and improved physiological condition by lowering BUN and UA content while increasing CAT activity. No significant effect was found in Casp-3 expression. EEBS has potential to improve acute renal failure condition through inflammatory suppression and renal function improvement.

8.
Med Sci Monit Basic Res ; 28: e933726, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35318298

ABSTRACT

BACKGROUND Inflammation is the body's first response to an illness that causes irritation or infection. Inflammation is tightly correlated with aging, which is a progressive degenerative process. Conditioned medium (CM) from adipose tissue-derived mesenchymal stem cells (CM-ATMSCs) has been shown to stimulate collagen synthesis and dermal fibroblast migration, as well as reduce wrinkles and improve wound healing. This study aimed to observe the production of inflammatory modulators - interleukin (IL)-1alpha, IL-6, IL-10, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB) - in CM-ATMSCs treated with fresh frozen plasma (FFP) at passages 3 (P3), 7, 11, and 15. MATERIAL AND METHODS ATMSCs P3 were obtained from liposuction of female donors, and the CM from ATMSCs was collected. Measurement of these cytokines was performed with ELISA. RESULTS At many passages, IL-6, a proinflammatory modulator, was discovered to be the most powerful modulator among FFP- and non-FFP-treated cells. However, CM-ATMSCs treated with FFP and in the late passage have significant differences (P<0.05) compared to non-FFP treatments and in other passages in their effects on secretion of inflammatory modulators. CONCLUSIONS In conclusion, CM-ATMSC has the potential to secrete proinflammatory modulators.


Subject(s)
Inflammation Mediators , Mesenchymal Stem Cells , Adipose Tissue , Culture Media, Conditioned/pharmacology , Female , Humans , Mesenchymal Stem Cells/physiology , Plasma
9.
Biosci Rep ; 41(7)2021 07 30.
Article in English | MEDLINE | ID: mdl-34143208

ABSTRACT

Recently, mesenchymal stem cells (MSCs) have been the most explored cells for cell therapy for osteoarthritis (OA) that can be obtained from various sources. Synovial membrane MSCs (SMMSCs) provide best potential for OA therapy, however they are not widely explored. Conditioned medium of SMMSCs (SMMSCs-CM) rich in growth factors and cytokines can inhibit apoptosis and increase chondrocytes cell proliferation. The aim of the present study was to determine growth factors content in SMMSCs-CM as well as the chondrogenic and chondroprotective markers expression in OA model after insulin-like growth factor (IGF)1-induced and non-induced SMMSCs-CM treatments. Chondrocyte cell line (CHON002) was induced by IL1ß as OA model (CHON002 with IL1ß (IL1ß-CHON002)) and treated with SMMSCs-CM with or without IGF1 induction to determine its effectiveness in repairing OA cells model. ELISA was used to assay BMP2, fibroblast growth factor 18 (FGF18) and transforming growth factor (TGF) ß1 (TGFß1) levels in SMMSCs-CM, matrix metalloproteinase (MMP) 13 (MMP13) and a disintegrin and metalloproteinase with thrombospondin motif 4 (ADAMTS4) levels in OA cells model treated with SMMSCs-CM. RT-qPCR analyses were used to investigate the gene expression of SOX9, COL2, and COL10. CM from SMMSCs cultured and induced by IGF1 150 ng/mL was the most effective concentration for increasing the content of growth factor markers of SMMSCs-CM, which had successfully increased negative cartilage hypertrophy markers (SOX9 and COL2) and reduced hypertrophy markers (COL10, MMP13, and ADAMTS4). Preconditioning with IGF1 has better and very significant results in lowering MMP13 and ADAMTS4 levels. The present study supports IGF1 pre-conditioned SMMSCs-CM to develop a new therapeutic approach in OA improvement through its chondrogenic and chondroprotective roles.


Subject(s)
Chondrocytes/drug effects , Chondrogenesis/drug effects , Insulin-Like Growth Factor I/pharmacology , Interleukin-1beta/pharmacology , Mesenchymal Stem Cells/drug effects , Osteoarthritis, Knee/prevention & control , Paracrine Communication , Synovial Membrane/drug effects , ADAMTS4 Protein/metabolism , Cell Line , Chondrocytes/metabolism , Chondrocytes/pathology , Culture Media, Conditioned , Humans , Matrix Metalloproteinase 13/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/pathology , Osteoarthritis, Knee/genetics , Osteoarthritis, Knee/metabolism , Osteoarthritis, Knee/pathology , Signal Transduction , Synovial Membrane/metabolism , Synovial Membrane/pathology
10.
Heliyon ; 7(1): e05620, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33474504

ABSTRACT

Acetaminophen (APAP) is a widely used analgesic, but it may cause liver injury (hepatotoxicity) via oxidative stress that induced by N-acetyl-p-benzoquinone imine (NAPQI) in long term usage or overdose. Multiple inflammatory mediators were also found to contribute for this effect. Many medicinal plants was known for its antioxidant and anti-inflammatory activities and one of them is Red betel (Piper crocatum Ruiz and Pav) from Indonesia. In this study, the red betel leaves extract (RBLE) protective effect against APAP-induced HepG2 cells was determined. APAP-induced HepG2 as hepatotoxicity cell model was treated with RBLE at 25 and 100 µg/mL. Protective effects of RBLE toward hepatotoxicity were evaluated by several parameters: tumor necrosis factor-α (TNF-α) concentration, reactive oxygen species (ROS) level, live cells percentage, apoptotic cells percentage, necrotic cells percentage, death cells percentage, CYP2E1 and GPX gene expression. The RBLE treatments (both 25 and 100 µg/mL) increased CYP2E1 and GPX gene expression also live cells percentage, while decreased ROS level, TNF-α concentration, also the percentage of death and necrotic cells. Red Betel leaves ethanol extract has hepatoprotective effect via anti-inflammatory, anti-necrotic, and antioxidant potency in liver injury model.

11.
Iran J Basic Med Sci ; 24(12): 1656-1665, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35432805

ABSTRACT

Objectives: Inflammation is thought to be the common pathophysiological basis for several disorders. Corilagin is one of the major active compounds which showed broad-spectrum biological and therapeutic activities, such as antitumor, hepatoprotective, anti-oxidant, and anti-inflammatory. This study aimed to evaluate the anti-oxidant and anti-inflammatory activities of corilagin in LPS-induced RAW264.7 cells. Materials and Methods: Anti-oxidant activities were examined by free radical scavenging of H2O2, NO, and *OH. The safe concentrations of corilagin on RAW264.7 were determined by MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay on RAW264.7 cell lines. The inflammation cells model was induced with LPS. The anti-inflammatory activities measured IL-6, TNF-α, NO, IL-1ß, PGE-2, iNOS, and COX-2 levels using ELISA assay. Results: The results showed that corilagin had a significant inhibition activity dose-dependently in scavenging activities toward H2O2, *OH, and NO with IC50 values 76.85 µg/ml, 26.68 µg/ml, and 66.64 µg/ml, respectively. The anti-inflammatory activity of corilagin also showed a significant decrease toward IL-6, TNF-α, NO, IL-1ß, PGE-2, iNOS, and COX-2 levels at the highest concentration (75 µM) compared with others concentration (50 and 25 µM) with the highest inhibition activities being 48.09%, 42.37%, 65.69%, 26.47%, 46.88%, 56.22%, 59.99%, respectively (P<0.05). Conclusion: Corilagin has potential as anti-oxidant and anti-inflammatory in LPS-induced RAW 264.7 cell lines by its ability to scavenge free radical NO, *OH, and H2O2 and also suppress the production of proinflammatory mediators including COX-2, IL-6, IL-1ß, and TNF-α in RAW 264.7 murine macrophage cell lines.

12.
Trop Life Sci Res ; 31(3): 127-144, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33214860

ABSTRACT

Skin aging is a complex natural process characterised by gradual diminishment of structural integrity and physiological imbalance of the skin tissue. Since the oxidative stress is tightly corelated to the skin aging process, the usage of antioxidant may serve as favourable strategies for slowing down the skin aging process. Mangosteen is an important fruit commodity and its extract had been extensively studied and revealing various biological activities. Present study aimed to assess the antioxidant and antiaging activity of mangosteen peel extract (MPE) and its phytochemical compounds. MPE and its compounds were subjected to ferric reducing antioxidant power (FRAP), hydroperoxide (H2O2) scavenging, anti-collagenase, anti-elastase, anti-hyaluronidase and anti-tyrosinase assay. MPE has the highest FRAP 116.31 ± 0.60 µM Fe(II) µg-1 extract, IC50 of MPE on H2O2 scavenging activity was 54.61 µg mL-1. MPE also has the highest anti elastase activity at IC50 7.40 µg mL-1. Alpha-mangostin showed potent anti-collagenase activity (IC50 9.75 µg mL-1). While gamma-mangostin showed potent anti-hyaluronidase (IC50 23.85 µg mL-1) and anti-tyrosinase (IC50 50.35 µg mL-1). MPE and its compounds were evaluated in vitro for antioxidant and antiaging activities. Current findings may provide scientific evidence for possible usage of mangosteen extract and its compounds as antioxidant and antiaging agent.

13.
J Exp Pharmacol ; 12: 363-369, 2020.
Article in English | MEDLINE | ID: mdl-33116951

ABSTRACT

BACKGROUND: There would be over 600 million people living with diabetes by 2040 as predicted by the World Health Organization. Diabetes is characterized by raised blood sugar and insulin resistance. Insulin regulates the influx of glucose into the cell by upregulating the glucose transporter type 4 (GLUT4) expression on the plasma membrane. Besides, PPAR-γ also controls the metabolism of glucose in adipose tissues. Curcuma mangga Val., denoted as C. mangga, is a native Indonesian medicinal plant that has many beneficial effects, including an antidiabetic potential. PURPOSE: In this research, we aimed to disclose the hypoglycemic activity of ethanol extract of C. mangga (EECM) in 3T3-L1 fibroblasts-derived adipocyte cells in regulating glucose uptake as confirmed by the GLUT4 and PPAR-γ gene expression. METHODS: The uptake of glucose was determined using radioactive glucose, while the gene expression of GLUT4, PPAR-γ, and ß-actin was quantified using mRNA segregation and real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR). RESULTS: We discovered that EECM interventions (200 and 50 µg/mL) increased glucose uptake in lipid-laden 3T3-L1 cells by 14.75 and 8.86 fold compared to the control non-insulin, respectively (p < 0.05). At the same doses, they also increased GLUT4 mRNA expression by 8.41 and 11.18 fold compared to the control non-insulin, respectively (p < 0.05). In contrast, EECM interventions (200 and 50 µg/mL) showed lower levels of PPAR-γ mRNA expression compared to the control metformin, indicating the anti-adipogenic potentials of EECM. CONCLUSION: EECM showed hypoglycemic activity in lipid-laden 3T3-L1 cells by improving glucose ingestion into the cells, which was mediated by increased GLUT4 expression and downregulated PPAR-γ expression.

14.
F1000Res ; 9: 444, 2020.
Article in English | MEDLINE | ID: mdl-32685136

ABSTRACT

Background: The giant trevally, Caranx ignobilis, is a commercially important marine fish in Indonesia. This species was initially cultured in Aceh Province. Previous reports showed that charcoal has a positive effect on survival and feed utilization of the giant trevally. However, the effects of adding charcoal to the diet on gut and intestine biometrics has, to our knowledge, never been described. Methods: Four activated charcoal sources were tested in this study using a completely randomized experimental design; coconut shell charcoal, mangrove wood charcoal, rice husk charcoal, and kernel palm shell charcoal. All treatments were performed with four replications. Juvenile giant trevally (average body weight, 16.52 ± 3.12 g; and average total length, 10.26 ± 0.64 cm) were stocked into the experimental tank at a density of 15 fish per tank. The fish were fed an experimental diet twice daily at 7 AM and 5 PM ad satiation for 42 days. Results: Analysis of variance showed that adding charcoal to the diet had significant effects on the length and width of the foveola gastrica and villous intestine (P < 0.05). The greatest length and width of the foveola gastrica was recorded in fish fed an experimental diet of rice husk charcoal with average values of 311.811 ± 9.869 µm and 241.786 ± 10.394 µm, respectively. The greatest length of intestinal villous was found in fish fed the mangrove wood charcoal diet, with a value of 135.012 ± 5.147 µm, but this length was not significantly different to that in fish fed rice charcoal and kernel palm shell charcoal. However, the greatest width of intestinal villous was recorded in fish fed the control diet (without charcoal; P < 0.05). Conclusion: The optimal sizes of the foveola gastrica and villous intestine were found in fish fed an experimental diet with rice husk charcoal.


Subject(s)
Animal Feed , Charcoal/administration & dosage , Fishes/microbiology , Gastrointestinal Microbiome , Animal Feed/analysis , Animals , Diet/veterinary , Indonesia
15.
Avicenna J Med Biotechnol ; 12(3): 172-178, 2020.
Article in English | MEDLINE | ID: mdl-32695280

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is a chronic disease that attacks joints and bones which can be caused by trauma or other joint diseases. Stem cell and Conditioned Medium (CM) of stem cells are developed for OA therapy, which is minimally invasive. It can decrease inflammation and be a replacement for knee surgery. This study aimed to utilize human Wharton's Jelly-Mesenchymal Stem Cells (hWJMSCs) as an alternative OA therapy. METHODS: CM from hWJMSCs induced by IGF1 was collected. The OA cells model (IL1ß-CHON002) culture was treated as follows: 1) with hWJMSCs-CM 15% (v/v); 2) with hWJMSCs-CM 30% (v/v); 3) with IGF1-hWJMSCs (IGF1-hWJMSCs-CM) 15% (v/v); 4) with IGF1-hWJMSCs-CM 30% (v/v). Parameters including inflammatory cytokines (IL10 and TNFα), extracellular matrix degradation (MMP3 expression), and chondrogenic marker (COL2 expression) were determined. RESULTS: The most significant increase in COL2 chondrogenic markers was found in IL1ß-CHON002 treatment using 15% CM of hWJMSCs induced with IGF1. CM of hWJMSCs can reduce inflammatory cytokines (TNFα and IL10) and matrix degradation mediator MMP3. Better result was gained from IGF1-induced hWJMSCs-CM. CONCLUSION: CM of IGF1-hWJMSCs reduce inflammation while repairing injured joint in the human chondrocyte OA model.

16.
F1000Res ; 9: 1274, 2020.
Article in English | MEDLINE | ID: mdl-34104427

ABSTRACT

Background: Research on supplementing feed with rice husk activated charcoal was carried out to determine the effect of variations in the concentration of rice husk activated charcoal on the growth and histological features of the Caranx ignobilis intestine. Methods: This study used an experimental method with a completely randomized design consisting of six treatments and four replications, including adding activated charcoal to feed at concentrations of 0%, 1%, 1.5%, 2%, 2.5%, and 3% for 42 days. The measured parameters included daily growth rate (DGR), specific growth rate (SGR), absolute growth rate (AGR), feed conversion ratio (FCR), feed efficiency (FE), survival rate (SR), length of foveola gastrica, width of foveola gastrica, length of intestinal villi, and width of intestinal villi. Data were analyzed statistically using one-way analysis of variance and Duncan's test. Results: The results showed that supplementing fish feed with rice husk activated charcoal at different concentrations significantly affected the values of DGR, AGR, FCR, FE, SR, length of the foveola gastrica, length of the villous intestine, and width of the villous intestine, but did not significantly affect SGR or foveola gastrica width. Conclusion: The 2% rice husk activated charcoal treatment showed the best results for all parameters.


Subject(s)
Charcoal , Oryza , Animals , Dietary Supplements , Intestines , Stomach
17.
Int J Mol Cell Med ; 8(4): 283-294, 2019.
Article in English | MEDLINE | ID: mdl-32587838

ABSTRACT

Mesenchymal stem cells (MSCs) have unique properties, including high proliferation rates, self-renewal, and multilineage differentiation ability. Their characteristics are affected by increasing age and microenvironment. This research is aimed to determine the proliferation, characteristics and differentiation capacity of adipose tissue-derived (AT)-MSCs at many passages with different media. The cell proliferation capacity was assayed using trypan blue. MSCs characterization (CD90, CD44, CD105, CD73, CD11b, CD19, CD34, CD45, and HLA-DR) was performed by flow cytometry, and cell differentiation was determined by specific stainings. Population doubling time (PDT) of AT-MSCs treated with fresh frozen plasma (FFP) and non-FFP increased in the late passage (P) (P15 FFP was 22.67 ± 7.01 days and non-FFP was 19.65 ± 2.27 days). Cumulative cell number was significantly different between FFP and non-FFP at P5, 10, 15. AT-MSCs at P4-15 were positive for CD90, CD44, CD105, and CD73, and negative for CD11b, CD19, CD34, CD45, and HLA-DR surface markers. AT-MSCs at P5, 10, 15 had potential toward adipogenic, chondrogenic, and osteogenic differentiation. Therefore, PDT was affected by increased age but no difference was observed in morphology, surface markers and differentiation capacity among passages. Cumulative cell number in FFP was higher in comparison with non-FFP in P5, 10, 15. Our data suggest that FFP may replace FBS for culturing MSCs.

SELECTION OF CITATIONS
SEARCH DETAIL