Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Nitric Oxide ; 151: 17-30, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39179197

ABSTRACT

The gasotransmitters nitric oxide (NO) and hydrogen sulfide (H2S) play important roles not only in maintaining physiological functions, but also in pathological conditions and events. Importantly, these molecules show a complex interplay in cancer biology, demonstrating both tumor-promoting and anti-tumor activities depending on their concentration, flux, and the environmental redox state. Additionally, various cell types respond differently to NO and H2S. These gasotransmitters can be synergistically combined with traditional anticancer treatments such as radiotherapy, immunotherapy, chemotherapy, and phototherapy. Notably, NO, and more recently H2S, have been shown to reverse multidrug resistance. Nanomaterials to deliver NO donors and, to a lesser extent, H2S donors, have emerged as a promising approach for targeted delivery of these gasotransmitters. Nanotechnology has advanced the delivery of anticancer drugs, enhancing efficiency and reducing side effects on non-cancerous cells. This review highlights recent progress in the design of NO and H2S-releasing nanomaterials for anticancer effects. It also explores the interactions between NO and H2S, which are crucial for developing combined therapies and nanomedicines with minimal side effects.


Subject(s)
Antineoplastic Agents , Hydrogen Sulfide , Nanostructures , Neoplasms , Nitric Oxide , Signal Transduction , Hydrogen Sulfide/metabolism , Hydrogen Sulfide/chemistry , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Nitric Oxide/metabolism , Nanostructures/chemistry , Signal Transduction/drug effects , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
2.
Carbohydr Polym ; 338: 122172, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38763719

ABSTRACT

Polysaccharide-based hydrogels are promising for many biomedical applications including drug delivery, wound healing, and tissue engineering. We illustrate herein self-healing, injectable, fast-gelling hydrogels prepared from multi-reducing end polysaccharides, recently introduced by the Edgar group. Simple condensation of reducing ends from multi-reducing end alginate (M-Alg) with amines from polyethylene imine (PEI) in water affords a dynamic, hydrophilic polysaccharide network. Trace amounts of acetic acid can accelerate the gelation time from hours to seconds. The fast-gelation behavior is driven by rapid Schiff base formation and strong ionic interactions induced by acetic acid. A cantilever rheometer enables real-time monitoring of changes in viscoelastic properties during hydrogel formation. The reversible nature of these crosslinks (imine bonds, ionic interactions) provides a hydrogel with low toxicity in cell studies as well as self-healing and injectable properties. Therefore, the self-healing, injectable, and fast-gelling M-Alg/PEI hydrogel holds substantial promise for biomedical, agricultural, controlled release, and other applications.


Subject(s)
Alginates , Hydrogels , Polysaccharides , Alginates/chemistry , Hydrogels/chemistry , Hydrogels/chemical synthesis , Hydrogels/pharmacology , Polysaccharides/chemistry , Polyethyleneimine/chemistry , Humans , Rheology , Animals , Schiff Bases/chemistry , Injections , Mice
SELECTION OF CITATIONS
SEARCH DETAIL