Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
J Acoust Soc Am ; 155(4): 2636-2645, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38629883

ABSTRACT

Subharmonic aided pressure estimation (SHAPE) is a noninvasive pressure measurement technique based on the pressure dependent subharmonic signal from contrast microbubbles. Here, SonoVue microbubble with a sulfur hexafluoride (SF6) core, was investigated for use in SHAPE. The study uses excitations of 25-700 kPa peak negative pressure (PNP) and 3 MHz frequency over eight pressurization cycles between atmospheric pressure and overpressures, ranging from 0 to 25 kPa (0 to 186 mm Hg). The SonoVue subharmonic response was characterized into two types. Unlike other microbubbles, SonoVue showed significant subharmonic signals at low excitations (PNPs, 25-400 kPa), denoted here as type I subharmonic. It linearly decreased with increasing overpressure (-0.52 dB/kPa at 100 kPa PNP). However, over multiple pressurization-depressurization cycles, type I subharmonic changed; its value at atmospheric pressure decreased over multiple cycles, and at later cycles, it recorded an increase in amplitude with overpressure (highest, +13 dB at 50 kPa PNP and 10 kPa overpressure). The subharmonic at higher excitations (PNP > 400 kPa), denoted here as type II subharmonic, showed a consistent decrease with the ambient pressure increase with strongest sensitivity of -0.4 dB/kPa at 500 kPa PNP.

2.
Tissue Eng Part A ; 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37847181

ABSTRACT

Nerve repair poses a significant challenge in the field of tissue regeneration. As a bioengineered therapeutic method, nerve conduits have been developed to address damaged nerve repair. However, despite their remarkable potential, it is still challenging to encompass complex physiologically microenvironmental cues (both biophysical and biochemical factors) to synergistically regulate stem cell differentiation within the implanted nerve conduits, especially in a facile manner. In this study, a neurogenic nerve conduit with self-actuated ability has been developed by in situ immobilization of neurogenic factors onto printed architectures with aligned microgrooves. One objective was to facilitate self-entubulation, ultimately enhancing nerve repairs. Our results demonstrated that the integration of topographical and in situ biological cues could accurately mimic native microenvironments, leading to a significant improvement in neural alignment and enhanced neural differentiation within the conduit. This innovative approach offers a revolutionary method for fabricating multifunctional nerve conduits, capable of modulating neural regeneration efficiently. It has the potential to accelerate the functional recovery of injured neural tissues, providing a promising avenue for advancing nerve repair therapies.

3.
Ultrasound Med Biol ; 49(7): 1550-1560, 2023 07.
Article in English | MEDLINE | ID: mdl-37100673

ABSTRACT

OBJECTIVE: The sensitivity of the acoustic response of microbubbles, specifically a strong correlation between their subharmonic response and the ambient pressure, has motivated development of a non-invasive subharmonic-aided pressure estimation (SHAPE) method. However, this correlation has previously been found to vary depending on the microbubble type, the acoustic excitation and the hydrostatic pressure range. In this study, the ambient pressure sensitivity of microbubble response was investigated. METHODS: The fundamental, subharmonic, second harmonic and ultraharmonic responses from an in-house lipid-coated microbubble were measured for excitations with peak negative pressures (PNPs) of 50-700 kPa and frequencies of 2, 3 and 4 MHz in the ambient overpressure range 0-25 kPa (0-187 mmHg) in an in vitro setup. RESULTS: The subharmonic response typically has three stages-occurrence, growth and saturation-with increasing excitation PNP. We find distinct decreasing and increasing variations of the subharmonic signal with overpressure that are closely related to the threshold of subharmonic generation in a lipid-shelled microbubble. Above the excitation threshold, that is, in the growth-saturation phase, subharmonic signals decreased linearly with slopes as high as -0.56 dB/kPa with ambient pressure increase; below the threshold excitation (at atmospheric pressure), increasing overpressure triggers subharmonic generation, indicating a lowering of subharmonic threshold, and therefore leads to an increase in subharmonic with overpressure, the maximum enhancement being ∼11 dB for 15 kPa overpressure at 2 MHz and 100 kPa PNP. CONCLUSION: This study indicates the possible development of novel and improved SHAPE methodologies.


Subject(s)
Contrast Media , Microbubbles , Acoustics , Pressure , Lipids , Ultrasonography/methods
4.
Soft Matter ; 19(3): 451-467, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36530043

ABSTRACT

Atomic Force Microscopy (AFM) force-distance (FD) experiments have emerged as an attractive alternative to traditional micro-rheology measurement techniques owing to their versatility of use in materials of a wide range of mechanical properties. Here, we show that the range of time dependent behaviour which can reliably be resolved from the typical method of FD inversion (fitting constitutive FD relations to FD data) is inherently restricted by the experimental parameters: sampling frequency, experiment length, and strain rate. Specifically, we demonstrate that violating these restrictions can result in errors in the values of the parameters of the complex modulus. In the case of complex materials, such as cells, whose behaviour is not specifically understood a priori, the physical sensibility of these parameters cannot be assessed and may lead to falsely attributing a physical phenomenon to an artifact of the violation of these restrictions. We use arguments from information theory to understand the nature of these inconsistencies as well as devise limits on the range of mechanical parameters which can be reliably obtained from FD experiments. The results further demonstrate that the nature of these restrictions depends on the domain (time or frequency) used in the inversion process, with the time domain being far more restrictive than the frequency domain. Finally, we demonstrate how to use these restrictions to better design FD experiments to target specific timescales of a material's behaviour through our analysis of a polydimethylsiloxane (PDMS) polymer sample.

5.
J Acoust Soc Am ; 152(4): R7, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36319256

ABSTRACT

The Reflections series takes a look back on historical articles from The Journal of the Acoustical Society of America that have had a significant impact on the science and practice of acoustics.

6.
Ultrasound Med Biol ; 48(9): 1720-1732, 2022 09.
Article in English | MEDLINE | ID: mdl-35697583

ABSTRACT

Polyethylene glycol (PEG) is often added to the lipid coating of a contrast microbubble to prevent coalescence and improve circulation. At high surface density, PEG chains are known to undergo a transition from a mushroom configuration to an extended brush configuration. We investigated the effects of PEG chain configuration on attenuation and dissolution of microbubbles by varying the molar ratio of the PEGylated lipid in the shell with three (0%, 2% and 5%) in the mushroom configuration and two (10% and 20%) in the brush configuration. We measured attenuation through the bubble suspensions and used it to obtain the characteristic rheological properties of their shells according to two interfacial rheological models. The interfacial elasticity was found to be significantly lower in the brush regime (∼0.6 N/m) than in the mushroom regime (∼1.3 N/m), but similar in value within each regime. The dissolution behavior of microbubbles under acoustic excitation inside an air-saturated medium was studied by measuring the time-dependent attenuation. Total attenuation recorded a transient increase because of growth resulting from air influx and an eventual decrease caused by dissolution. Microbubble shell composition with varying PEG concentrations had significant effects on dissolution dynamics.


Subject(s)
Microbubbles , Polyethylene Glycols , Contrast Media , Lipids , Solubility
7.
ACS Appl Bio Mater ; 5(5): 2163-2175, 2022 05 16.
Article in English | MEDLINE | ID: mdl-35417133

ABSTRACT

Biological nanoparticles, such as exosomes, offer an approach to drug delivery because of their innate ability to transport biomolecules. Exosomes are derived from cells and an integral component of cellular communication. However, the cellular cargo of human exosomes could negatively impact their use as a safe drug carrier. Additionally, exosomes have the intrinsic yet enigmatic, targeting characteristics of complex cellular communication. Hence, harnessing the natural transport abilities of exosomes for drug delivery requires predictably targeting these biological nanoparticles. This manuscript describes the use of two chemical modifications, incorporating a neuropilin receptor agonist peptide (iRGD) and a hypoxia-responsive lipid for targeting and release of an encapsulated drug from bovine milk exosomes to triple-negative breast cancer cells. Triple-negative breast cancer is a very aggressive and deadly form of malignancy with limited treatment options. Incorporation of both the iRGD peptide and hypoxia-responsive lipid into the lipid bilayer of bovine milk exosomes and encapsulation of the anticancer drug, doxorubicin, created the peptide targeted, hypoxia-responsive bovine milk exosomes, iDHRX. Initial studies confirmed the presence of iRGD peptide and the exosomes' ability to target the αvß3 integrin, overexpressed on triple-negative breast cancer cells' surface. These modified exosomes were stable under normoxic conditions but fragmented in the reducing microenvironment created by 10 mM glutathione. In vitro cellular internalization studies in monolayer and three-dimensional (3D) spheroids of triple-negative breast cancer cells confirmed the cell-killing ability of iDHRX. Cell viability of 50% was reached at 10 µM iDHRX in the 3D spheroid models using four different triple-negative breast cancer cell lines. Overall, the tumor penetrating, hypoxia-responsive exosomes encapsulating doxorubicin would be effective in reducing triple-negative breast cancer cells' survival.


Subject(s)
Exosomes , Triple Negative Breast Neoplasms , Animals , Cell Line, Tumor , Doxorubicin/pharmacology , Humans , Hypoxia/drug therapy , Lipids/therapeutic use , Milk , Triple Negative Breast Neoplasms/drug therapy , Tumor Microenvironment
8.
J Ultrasound Med ; 41(7): 1781-1789, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34724241

ABSTRACT

OBJECTIVES: Subharmonic aided pressure estimation (SHAPE) has been shown effective for noninvasively measuring hydrostatic fluid pressures in a variety of clinical applications. The objective of this study was to explore potential improvements in SHAPE sensitivity using monodisperse microbubbles. METHODS: Populations of monodisperse microbubbles were created using a commercially available microfluidics device (Solstice Pharmaceuticals). Size distributions were assessed using a Coulter Counter and stability of the distribution following fabrication was evaluated over 24 hours. Attenuation of the microbubble populations from 1 to 10 MHz was then quantified using single element transducers to identify each formulation's resonance frequency. Frequency spectra over increasing driving amplitudes were investigated to determine the nonlinear phases of subharmonic signal generation. SHAPE sensitivity was evaluated in a hydrostatic pressure-controlled water bath using a Logiq E10 scanner (GE Healthcare). RESULTS: Monodisperse lipid microbubble suspensions ranging from 2.4 to 5.3 µm in diameter were successfully created and they showed no discernable change in size distribution over 24 hours following activation. Calculated resonance frequencies ranged from 2.1 to 6.3 MHz and showed excellent correlation with microbubble diameter (R2 > 0.99). When investigating microbubble frequency response, subharmonic signal occurrence was shown to begin at 150 kPa peak negative pressure, grow up to 225 kPa, and saturate at approximately 250 kPa. Using the Logiq E10, monodisperse bubbles demonstrated a SHAPE sensitivity of -0.17 dB/mmHg, which was nearly twice the sensitivity of the commercial polydisperse microbubble currently being used in clinical trials. CONCLUSIONS: Monodisperse microbubbles have the potential to greatly improve the sensitivity of SHAPE for the noninvasive measurement of hydrostatic pressures.


Subject(s)
Contrast Media , Microbubbles , Blood Pressure Determination , Humans , Transducers , Ultrasonography
9.
Soft Matter ; 17(37): 8523-8535, 2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34499062

ABSTRACT

Hydrodynamic interactions generate a diffusive motion in particulates in a shear flow, which plays seminal roles in overall particulate rheology and its microstructure. Here we investigate the shear induced diffusion in a red-blood cell (RBC) suspension using a numerical simulation resolving individual motion and deformation of RBCs. The non-spherical resting shape of RBCs gives rise to qualitatively different regimes of cell dynamics in a shear flow such as tank-treading, breathing, tumbling and swinging, depending on the cell flexibility determined by the elastic capillary number. We show that the transition from tumbling to tank-treading causes a reduction in the gradient diffusivity. The diffusivity is computed using a continuum approach from the evolution of a randomly packed cell-layer width with time as well as by the dynamic structure factor of the suspension. Both approaches, although operationally different, match and show that for intermediate capillary numbers RBCs cease tumbling accompanied by a drop in the coefficient of gradient diffusivity. A further increase of capillary number increases the diffusivity due to increased deformation. The effects of bending modulus and viscosity ratio variations are also briefly investigated. The computed shear induced diffusivity was compared with values in the literature. Apart from its effects in margination of cells in blood flow and use in medical diagnostics, the phenomenon broadly offers important insights into suspensions of deformable particles with non-spherical equilibrium shapes, which also could play a critical role in using particle flexibility for applications such as label free separation or material processing.


Subject(s)
Erythrocytes , Motion , Shear Strength , Suspensions , Viscosity
10.
Ultrasound Med Biol ; 47(11): 3263-3274, 2021 11.
Article in English | MEDLINE | ID: mdl-34456086

ABSTRACT

Scientists face a significant challenge in creating effective biomimetic constructs in tissue engineering with sustained and controlled delivery of growth factors. Recently, the addition of phase-shift droplets inside the scaffolds is being explored for temporal and spatial control of biologic delivery through vaporization using external ultrasound stimulation. Here, we explore acoustic droplet vaporization (ADV) in gelatin methacrylate (GelMA), a popular hydrogel used for tissue engineering applications because of its biocompatibility, tunable mechanical properties and rapid reproducibility. We embedded phase-shift perfluorocarbon droplets within the GelMA resin before crosslinking and characterized ADV and inertial cavitation (IC) thresholds of the embedded droplets. We were successful in vaporizing two different perfluorocarbon---perfluoropentane (PFP) and perfluorohexane (PFH)--cores at 2.25- and 5-MHz frequencies and inside hydrogels with varying mechanical properties. The ADV and IC thresholds for PFP droplets in GelMA scaffolds increased with frequency and in stiffer scaffolds. The PFH droplets exhibited ADV and IC activity only at 5 MHz for the range of excitations below 3MPa investigated here and at threshold values higher than those of PFP droplets. The results provide a proof of concept for the possible use of ADV in hydrogel scaffolds for tissue engineering.


Subject(s)
Fluorocarbons , Acoustics , Gelatin , Methacrylates , Reproducibility of Results , Tissue Scaffolds , Volatilization
11.
J Ultrasound Med ; 39(10): 2043-2052, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32352188

ABSTRACT

OBJECTIVES: Cancer is characterized by uncontrolled cell proliferation, which makes novel therapies highly desired. In this study, the effects of near-field low-intensity pulsed ultrasound (LIPUS) stimulation on T47D human breast cancer cell and healthy immortalized MCF-12A breast epithelial cell proliferation were investigated in monolayer cultures. METHODS: A customized ultrasound (US) exposure setup was used for the variation of key US parameters: intensity, excitation duration, and duty cycle. Cell proliferation was quantified by 5-bromo-2'-deoxyuridine and alamarBlue assays after LIPUS excitation. RESULTS: At a 20% duty cycle and 10-minute excitation period, we varied LIPUS intensity from to 100 mW/cm2 (spatial-average temporal-average) to find a gradual decrease in T47D cell proliferation, the decrease being strongest at 100 mW/cm2 . In contrast, healthy MCF-12A breast cells showed an increase in proliferation when exposed to the same conditions. Above a 60% duty cycle, T47D cell proliferation decreased drastically. Effects of continuous wave US stimulation were further explored by varying the intensity and excitation period. CONCLUSIONS: These experiments concluded that, irrespective of the waveform (pulsed or continuous), LIPUS stimulation could inhibit the proliferation of T47D breast cancer cells, whereas the same behavior was not observed in healthy cells. The study demonstrates the beneficial bioeffects of LIPUS on breast cancer cells and offers the possibility of developing novel US-mediated cancer therapy.


Subject(s)
Breast Neoplasms , Ultrasonic Therapy , Breast Neoplasms/therapy , Cell Differentiation , Cell Proliferation , Humans , Ultrasonic Waves
12.
JBJS Rev ; 8(2): e0076, 2020 02.
Article in English | MEDLINE | ID: mdl-32224627

ABSTRACT

Three-dimensional (3D) printing is an emerging tool in provider and patient education, surgical planning, and the design and implementation of medical devices and implants. Recent decreases in the cost of 3D printers along with advances in and cost reduction of printable materials have elevated 3D printing within the medical device industry. The advantages of 3D printing over traditional means of implant manufacturing lie in its ability to use a wide array of materials, its fine control of the macro- and microarchitecture, and its unprecedented customizability. Barriers to the widespread adoption of 3D-printed implants include questions of implant durability, U.S. Food and Drug Administration (FDA) approval for patient-specific implants, and insurance coverage of those implants.


Subject(s)
Orthopedics/trends , Printing, Three-Dimensional , Humans , Precision Medicine , Prostheses and Implants
13.
Nanoscale Adv ; 2(8): 3411-3422, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-36034734

ABSTRACT

Exosomes are naturally secreted extracellular bilayer vesicles (diameter 40-130 nm), which have recently been found to play a critical role in cell-to-cell communication and biomolecule delivery. Their unique characteristics-stability, permeability, biocompatibility and low immunogenicity-have made them a prime candidate for use in delivering cancer therapeutics and other natural products. Here we present the first ever report of echogenic exosomes, which combine the benefits of the acoustic responsiveness of traditional microbubbles with the non-immunogenic and small-size morphology of exosomes. Microbubbles, although effective as ultrasound contrast agents, are restricted to intravascular usage due to their large size. In the current study, we have rendered bovine milk-derived exosomes echogenic by freeze drying them in the presence of mannitol. Ultrasound imaging and direct measurement of linear and nonlinear scattered responses were used to investigate the echogenicity and stability of the prepared exosomes. A commercial scanner registered enhancement (28.9% at 40 MHz) in the brightness of ultrasound images in presence of echogenic exosomes at 5 mg/mL. The exosomes also showed significant linear and nonlinear scattered responses-11 dB enhancement in fundamental, 8.5 dB in subharmonic and 3.5 dB in second harmonic all at 40 µg/mL concentration. Echogenic exosomes injected into the tail vein of mice and the synovial fluid of rats resulted in significantly higher brightness-as much as 300%-of the ultrasound images, showing their promise in a variety of in vivo applications. The echogenic exosomes, with their large-scale extractability from bovine milk, lack of toxicity and minimal immunogenic response, successfully served as ultrasound contrast agents in this study and offer an exciting possibility to act as an effective ultrasound responsive drug delivery system.

14.
Soft Matter ; 15(24): 4873-4889, 2019 Jun 19.
Article in English | MEDLINE | ID: mdl-31165134

ABSTRACT

It was experimentally demonstrated by Migler and his collaborators [Phys. Rev. Lett., 2001, 86, 1023; Langmuir, 2003, 19, 8667] that a strongly confined drop monolayer sheared between two parallel plates can spontaneously develop a flow-oriented drop-chain morphology. Here we show that the formation of the chain-like microstructure is driven by far-field Hele-Shaw quadrupolar interactions between drops, and that drop spacing within chains is controlled by the effective drop repulsion associated with the existence of confinement-induced reversing streamlines, i.e., the swapping trajectory effect. Using direct numerical simulations and an accurate quasi-2D model that incorporates quadrupolar and swapping-trajectory contributions, we analyze microstructural evolution in a monodisperse drop monolayer. Consistent with experimental observations, we find that drop spacing within individual chains is usually uniform. Further analysis shows that at low area fractions all chains have the same spacing, but at higher area fractions there is a large spacing variation from chain to chain. These findings are explained in terms of uncompressed and compressed chains. At low area fractions most chains are uncompressed (spacing equals lst, which is the stable separation of an isolated pair). At higher area fractions compressed chains (with tighter spacing) are formed in a process of chain zipping along y-shaped structural defects. We also discuss the relevance of our findings to other shear-driven systems, such as suspensions of spheres in non-Newtonian fluids.

15.
Mol Pharm ; 16(5): 1789-1798, 2019 05 06.
Article in English | MEDLINE | ID: mdl-30951627

ABSTRACT

Exosomes, biological extracellular vesicles, have recently begun to find use in targeted drug delivery in solid tumor research. Ranging from 30-120 nm in size, exosomes are secreted from cells and isolated from bodily fluids. Exosomes provide a unique material platform due to their characteristics, including physical properties such as stability, biocompatibility, permeability, low toxicity, and low immunogenicity-all critical to the success of any nanoparticle drug delivery system. In addition to traditional chemotherapeutics, natural products and RNA have been encapsulated for the treatment of breast, pancreatic, lung, prostate cancers, and glioblastoma. This review discusses current research on exosomes for drug delivery to solid tumors.


Subject(s)
Drug Carriers , Drug Delivery Systems/methods , Exosomes , Neoplasms/drug therapy , Animals , Biological Products , Humans , Mice , Milk/cytology , Nanoparticles/adverse effects , Xenograft Model Antitumor Assays/methods , Zebrafish
16.
J Acoust Soc Am ; 145(2): 1105, 2019 02.
Article in English | MEDLINE | ID: mdl-30823782

ABSTRACT

Phase shift liquid perfluorocarbon (PFC) droplets vaporizable by ultrasound into echogenic microbubble above a threshold pressure, termed acoustic droplet vaporization (ADV), are used for therapeutic and diagnostic applications. This study systematically investigated the effect of excitation frequency (2.25, 10, and 15 MHz) on the ADV and inertial cavitation (IC) thresholds of lipid-coated PFC droplets of three different liquid cores-perfluoropentane (PFP), perfluorohexane (PFH), and perfluorooctyl bromide (PFOB)-and of two different sizes-average diameters smaller than 3 µm and larger than 10 µm-in a tubeless setup. This study found that the ADV threshold increases with frequency for the lowest boiling point liquid, PFP, for both large and small size droplets. For higher boiling point liquids, PFH and PFOB, this study did not detect vaporization for small size droplets at the excitation levels (maximum 4 MPa peak negative) studied here. The large PFOB droplets experienced ADV only at the highest excitation frequency 15 MHz. For large PFH droplets, ADV threshold decreases with frequency that could possibly be due to the superharmonic focusing being a significant effect at larger sizes and the higher excitation pressures. ADV thresholds at all the frequencies studied here occurred at lower rarefactional pressures than IC thresholds indicating that phase transition precedes inertial cavitation.


Subject(s)
Acoustics , Fluorocarbons/chemistry , Volatilization , Microbubbles , Particle Size , Transition Temperature , Ultrasonic Waves
17.
Adv Biosyst ; 3(2): e1800257, 2019 02.
Article in English | MEDLINE | ID: mdl-32627376

ABSTRACT

Lipid-coated microbubbles, clinically approved as contrast enhancing agents for ultrasound imaging, are investigated for the first time for their possible applications in bone tissue engineering. Effects of microbubbles (average diameter 1.1 µm) coated by a mixture of lipids (1,2-dipalmitoyl-sn-glycero-3-phosphocholine, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000], and 1,2-dipalmitoyl-3-trimethylmmonium-propane) in the presence of low intensity pulsed ultrasound (LIPUS) on human mesenchymal stem cells seeded on 3D printed poly(lactic acid) porous scaffolds are investigated. LIPUS stimulation (30 mW cm-2 , 1.5 MHz, 20% duty cycle) for 3 min a day with 0.5% v/v microbubbles results in a significant increase in proliferation (up to 19.3%) when compared to control after 1, 3, and 5 d. A 3-week osteogenic differentiation study shows a significant increase in total protein content (up to 27.5%), calcium deposition (up to 4.3%), and alkaline phosphatase activity (up to 43.1%) initiated by LIPUS with and without the presence of microbubbles. The microbubbles are found to remain stable during exposure, and their sustained oscillations demonstrably help focus the LIPUS energy toward enhanced cellular response. Integrating LIPUS and microbubbles promises to be a novel and effective strategy for bone tissue engineering and regeneration therapies.


Subject(s)
Cell Differentiation , Mesenchymal Stem Cells , Microbubbles , Osteogenesis , Ultrasonic Waves , Cell Differentiation/drug effects , Cell Differentiation/radiation effects , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Cells, Cultured , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Osteogenesis/drug effects , Osteogenesis/radiation effects , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds
18.
Biomacromolecules ; 19(10): 4122-4132, 2018 10 08.
Article in English | MEDLINE | ID: mdl-30169024

ABSTRACT

Chemotherapeutic agents for treating cancers show considerable side effects, toxicity, and drug resistance. To mitigate the problems, we designed nucleus-targeted, echogenic, stimuli-responsive polymeric vesicles (polymersomes) to transport and subsequently release the encapsulated anticancer drugs within the nuclei of pancreatic cancer cells. We synthesized an alkyne-dexamethasone derivative and conjugated it to N3-polyethylene glycol (PEG)-polylactic acid (PLA) copolymer employing the Cu2+ catalyzed "Click" reaction. We prepared polymersomes from the dexamethasone-PEG-PLA conjugate along with a synthesized stimuli-responsive polymer PEG-S-S-PLA. The dexamethasone group dilates the nuclear pore complexes and transports the vesicles to the nuclei. We designed the polymersomes to release the encapsulated drugs in the presence of a high concentration of reducing agents in the nuclei of pancreatic cancer cells. We observed that the nucleus-targeted, stimuli-responsive polymersomes released 70% of encapsulated contents in the nucleus-mimicking environment in 80 min. We encapsulated the cancer stemness inhibitor BBI608 in the vesicles and observed that the BBI608 encapsulated polymersomes reduced the viability of the BxPC3 cells to 43% in three-dimensional spheroid cultures. The polymersomes were prepared following a special protocol so that they scatter ultrasound, allowing imaging by a medical ultrasound scanner. Therefore, these echogenic, targeted, stimuli-responsive, and drug-encapsulated polymersomes have the potential for trackable, targeted carrier of chemotherapeutic drugs to cancer cell nuclei.


Subject(s)
Antineoplastic Agents/administration & dosage , Benzofurans/administration & dosage , Cell Nucleus/metabolism , Drug Carriers/chemistry , Drug Delivery Systems , Naphthoquinones/administration & dosage , Neoplastic Stem Cells/drug effects , Pancreatic Neoplasms/drug therapy , Polymers/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Benzofurans/chemistry , Benzofurans/pharmacology , Cell Nucleus/drug effects , Cell Survival , Humans , Naphthoquinones/chemistry , Naphthoquinones/pharmacology , Neoplastic Stem Cells/pathology , Pancreatic Neoplasms/pathology , Polymers/administration & dosage , Tumor Cells, Cultured
19.
Biomed Mater ; 13(5): 055013, 2018 08 06.
Article in English | MEDLINE | ID: mdl-30018182

ABSTRACT

The acoustic and mechanical properties of 3D-printed porous poly-(ethylene glycol)-diacrylate (PEGDA) hydrogel scaffolds were investigated using an ultrasound pulse echo technique on different scaffold microstructures (solid, hexagonal and square pores). Acoustic parameters such as speed of sound, acoustic impedance and attenuation coefficient as well as physical parameters such as the pore structure, effective density and elastic moduli were determined. The results show that microstructure (porosity and pore geometry) plays a crucial role in defining properties of 3D-printed scaffolds, achieving the highest attenuation for the scaffold with hexagonal pores and showing a decrease in sound speed and elastic moduli with increasing porosity. The properties were also found to be similar to those of soft tissues, making PEGDA scaffolds a suitable candidate for tissue engineering applications. To evaluate their cellular performance, adhesion and proliferation of human mesenchymal stem cells (hMSCs) in these scaffolds were investigated. The porous scaffolds performed better than the solid one, recording the highest cell attachment and growth for the scaffold with the square pores.


Subject(s)
Acoustics , Mesenchymal Stem Cells/cytology , Printing, Three-Dimensional , Tissue Engineering/methods , Acrylates/chemistry , Cell Adhesion , Cell Proliferation , Elasticity , Humans , Hydrogels , Materials Testing , Polyesters/chemistry , Polyethylene Glycols/chemistry , Porosity , Software , Stress, Mechanical , Tissue Scaffolds/chemistry , Ultrasonics
20.
Chemistry ; 24(48): 12490-12494, 2018 Aug 27.
Article in English | MEDLINE | ID: mdl-29968262

ABSTRACT

Hypoxia in solid tumors facilitates the progression of the disease, develops resistance to chemo and radiotherapy, and contributes to relapse. Due to the lack of tumor penetration, most of the reported drug carriers are unable to reach the hypoxic niches of the solid tumors. We have developed tissue-penetrating, hypoxia-responsive echogenic polymersomes to deliver anticancer drugs to solid tumors. The polymersomes are composed of a hypoxia-responsive azobenzene conjugated and a tissue penetrating peptide functionalized polylactic acid-polyethylene glycol polymer. The drug-encapsulated, hypoxia-responsive polymersomes substantially decreased the viability of pancreatic cancer cells in spheroidal cultures. Under normoxic conditions, polymersomes were echogenic at diagnostic ultrasound frequencies but lose the echogenicity under hypoxia. In-vivo imaging studies with xenograft mouse model further confirmed the ability of the polymersomes to target, penetrate, and deliver the encapsulated contents in hypoxic pancreatic tumor tissues.


Subject(s)
Antineoplastic Agents/chemistry , Azo Compounds/chemistry , Drug Carriers/chemistry , Lactates/chemistry , Oligopeptides/chemistry , Polyethylene Glycols/chemistry , Animals , Antineoplastic Agents/administration & dosage , Cell Line, Tumor , Cell Survival/drug effects , Deoxycytidine/administration & dosage , Deoxycytidine/analogs & derivatives , Deoxycytidine/chemistry , Drug Liberation , Heterografts , Humans , Male , Mice, Nude , Microsomes, Liver/metabolism , Nanoparticles/chemistry , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/drug therapy , Particle Size , Rats , Tumor Hypoxia , Gemcitabine
SELECTION OF CITATIONS
SEARCH DETAIL
...