Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 55(7): 2441-5, 2016 Feb 12.
Article in English | MEDLINE | ID: mdl-26633085

ABSTRACT

[Ge9](4-) Zintl clusters are used as soluble germanium source for a bottom-up fabrication of Ge nanomorphologies such as inverse opal structures with tunable composition. The method is based on the assembly and oxidation of [Ge9 ](4-) clusters in a template mold using SiCl4 , GeCl4 , and PCl3 leading to Si and P-containing Ge phases as shown by X-ray diffraction, Raman spectroscopy, and energy-dispersive X-ray analysis. [Ge9](4-) clusters are retained using ethylenediamine (en) as a transfer medium to a mold after removal of the solvent if water is thoroughly excluded, but are oxidized to amorphous Ge in presence of water traces. (1)H NMR spectroscopy reveals the oxidative deprotonation of en by [Ge9](4-). Subsequent annealing leads to crystalline Ge. As an example for wet-chemical synthesis of complex Ge nanomorphologies, we describe the fabrication of undoped and P-doped inverse opal-structured Ge films with a rather low oxygen contents. The morphology of the films with regular volume porosity is characterized by SEM, TEM, and grazing incidence small-angle X-ray scattering.

2.
ChemSusChem ; 8(16): 2696-704, 2015 Aug 24.
Article in English | MEDLINE | ID: mdl-26105957

ABSTRACT

Diblock copolymers have been used in sol-gel synthesis to successfully tailor the nanoscale morphology of thin ZnO films. As the fabrication of several-micron-thick mesoporous films such as those required in dye-sensitized solar cells (DSSCs) was difficult with this approach, we exploited the benefits of diblock-copolymer-directed synthesis that made it compatible with screen printing. The simple conversion of the diblock copolymer ZnO precursor sol to a screen-printing paste was not possible as it resulted in poor film properties. To overcome this problem, an alternative route is proposed in which the diblock copolymer ZnO precursor sol is first blade coated and calcined, then converted to a screen-printing paste. This allows the benefits of diblock-copolymer-directed particle formation to be compatible with printing methods. The morphologies of the ZnO nanostructures were studied by SEM and correlated with the current density-voltage characteristics.


Subject(s)
Nanostructures/chemistry , Zinc Oxide/chemistry , Coloring Agents/chemistry , Crystallization , Electric Power Supplies , Microscopy, Electron, Scanning , Nanostructures/ultrastructure , Solar Energy , Solutions
3.
ChemSusChem ; 7(8): 2140-5, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24954672

ABSTRACT

The spray-deposition technique is an effective and scalable method to deposit zinc oxide nanostructures, which are used as active layers for dye-sensitized solar cells (DSSCs) in the present study. The dynamics of structural evolution are studied with grazing incidence small-angle X-ray scattering during in situ spraying. Nanostructured films obtained through multiple spray shots provide suitable structural length scales, morphologies, and film thicknesses; this leads to reasonable performance in a DSSC with the highest short-circuit current density reported so far.


Subject(s)
Coloring Agents/chemistry , Electric Power Supplies , Solar Energy , Zinc Oxide/chemistry , Nanostructures/chemistry
4.
ChemSusChem ; 6(8): 1414-24, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23881752

ABSTRACT

Zinc oxide (ZnO) nanostructured films are synthesized on silicon substrates to form different morphologies that consist of foamlike structures, wormlike aggregates, circular vesicles, and spherical granules. The synthesis involves a sol-gel mechanism coupled with an amphiphilic diblock copolymer poly(styrene-block-ethylene oxide), P(S-b-EO), which acts as a structure-directing template. The ZnO precursor zinc acetate dihydrate (ZAD) is incorporated into the poly(ethylene oxide) block. Different morphologies are obtained by adjusting the weight fractions of the solvents and ZAD. The sizes of the structure in solution for different sol-gels are probed by means of dynamic light scattering. Thin-film samples with ZnO nanostructures are prepared by spin coating and solution casting followed by a calcination step. On the basis of various selected combinations of weight fractions of the ingredients used, a ternary phase diagram is constructed to show the compositional boundaries of the investigated morphologies. The evolution and formation mechanisms of the morphologies are addressed in brief. The surface morphologies of the ZnO nanostructures are studied with SEM. The inner structures of the samples are probed by means of grazing incidence small-angle X-ray scattering to complement the SEM investigations. XRD measurements confirm the crystallization of the ZnO in the wurtzite phase upon calcination of the nanocomposite film in air. The optical properties of ZnO are analyzed by FTIR and UV/Vis spectroscopy.


Subject(s)
Nanostructures/chemistry , Nanotechnology/methods , Polyethylene Glycols/chemistry , Polystyrenes/chemistry , Zinc Oxide/chemistry , Molecular Weight , Optical Phenomena , Solvents/chemistry , Zinc Acetate/chemistry
5.
ACS Appl Mater Interfaces ; 5(3): 719-29, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23273246

ABSTRACT

The degree of filling of titania nanostructures with a solid hole-conducting material is important for the performance of solid-state dye-sensitized solar cells (ssDSSCs). Different ways to infiltrate the hole-conducting polymer poly(3-hexylthiophene) (P3HT) into titania structures, both granular structures as they are already applied commercially and tailored sponge nanostructures, are investigated. The solar cell performance is compared to the morphology determined with scanning electron microscopy (SEM) and time-of-flight grazing incidence small-angle neutron scattering (TOF-GISANS). The granular titania structure, commonly used for ssDSSCs, shows a large distribution of particle and pore sizes, with porosities in the range from 41 to 67%, including even dense parts without pores. In contrast, the tailored sponge nanostructure has well-defined pore sizes of 25 nm with an all-over porosity of 54%. Filling of the titania structures with P3HT by solution casting results in a mesoscopic P3HT overlayer and consequently a bad solar cell performance, even though a filling ratio of 67% is observed. For the infiltration by repeated spin coating, only 57% pore filling is achieved, whereas filling by soaking in the solvent with subsequent spin coating yields filling as high as 84% in the case of the tailored titania sponge structures. The granular titania structure is filled less completely than the well-defined porous structures. The solar cell performance is increased with an increasing filling ratio for these two ways of infiltration. Therefore, filling by soaking in the solvent with subsequent spin coating is proposed.

6.
Chemphyschem ; 13(9): 2412-7, 2012 Jun 18.
Article in English | MEDLINE | ID: mdl-22615165

ABSTRACT

A low temperature route to crystalline titania nanostructures in thin films is presented. The synthesis is performed by the combination of sol-gel processes, using a novel precursor for this kind of application, an ethylene glycol-modified titanate (EGMT), and the structure templating by micro-phase separation of a di-block copolymer. Different temperatures around 100 °C are investigated. The nanostructure morphology is examined with scanning electron microscopy, whereas the crystal structure and thin film compositions are examined by scattering methods. Optoelectronic measurements reveal the band-gap energies and sub-band states of the titania films. An optimum titania thin film is created at temperatures not higher than 90 °C, regarding sponge-like morphology with pore sizes of 25-30 nm, porosity of up to 71% near the sample surface, and crystallinity of titania in the rutile phase. The low temperature during synthesis is of high importance for photovoltaic applications and renders the resulting titania films interesting for future energy solutions.

SELECTION OF CITATIONS
SEARCH DETAIL