Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Ethnopharmacol ; 326: 117935, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38408692

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Nonalcoholic fatty liver disease (NAFLD) is the most common severe liver disease globally, progressing further into nonalcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC). Vasaguduchyadi Kwatha (VK) is an Ayurvedic formulation traditionally used to treat liver diseases and other metabolic complications. This study is an ethnopharmacological approach to unravel this indigenous remedy. AIM OF THE STUDY: We aimed to discover the probable mechanism of action of VK against NASH in this study, using network pharmacology, molecular docking, in vitro study, and preclinical investigation. METHODS AND RESULTS: Among the 55 components identified, 10 were confirmed based on mass, elution charecteristics, MS/MS analysis data, and fragmentation rules. Computational study indicated 92 targets involved in the central pathways of NASH, out of which only 15 targets and 9 VK constituents have significant docking scores. In vitro and in vivo analysis results showed that VK significantly reduces weight gain and improves insulin sensitivity, dyslipidemia, steatohepatitis and overall histological features of NASH compared to saroglitazar (SGZR). CONCLUSION: Our detailed study yielded three signalling pathways related to NASH on which VK has maximum effect, bringing up a probable alternative treatment for NASH.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Molecular Docking Simulation , Tandem Mass Spectrometry , Liver/metabolism
2.
J Biomol Struct Dyn ; : 1-12, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38356141

ABSTRACT

Picrorhiza kurroa Royle ex Benth. (P. kurroa/PK/Kutki), a Himalayan herb belonging to the family Scrophulariaceae, is widely known for its hepatoprotective activity. Traditionally, it is found to be effective for upper respiratory tract disorders, kidney and liver problems, dyspepsia and chronic diarrhoea but the mechanism of action is unclear. In this study, the mode of action of P. kurroa for the treatment of diabetic nephropathy (DN) was investigated by network pharmacology, molecular docking and in vitro assays. Numerous databases have been screened and 33 P. kurroa bioactive compounds and 56 targets were identified. The compounds-targets network, targets-pathways network and compounds-targets-pathways network were constructed. The major bioactive compounds include picrorhizaoside D, scrophuloside A, vanillic acid, arvenin I, cinnamic acid, picein, 6-feruloyl catalpol, picroside V, pikuroside, apocynin, picroside I, picroside IV, androsin, cucurbitacin P, boschnaloside, kutkoside, cucurbitacin O, cucurbitacin K, picracin, etc. The potential protein targets identified in this study were MMP1, PRKCA, MMP7, IL18, IL1, TNF, ACE, ASC, CASP1, NLRP3, MAP, KURROA1, mitogen-activated protein kinase (MAPK)14 and MAPK8. In the Database for annotation visualization and integrated discovery (DAVID) pathways and Gene Ontology enrichment analysis, 14 major DN signalling pathways were identified, including MAPK, renin-angiotensin system (RAS), TNF, signal transducer and activator of transcription (JAK-STAT), TLR, vascular endothelial growth factor (VEGF), mTOR, Wnt, Ras, PPARs, NFB, NOD and phosphatidylinositol signalling pathways. A molecular docking study revealed that 32 bioactive compounds of P. kurroa interacted with 14 significant proteins/genes associated with DN. P. kurroa extract was proven to enhance the survival rate of HEK cells significantly. Protein expression analysis using Western blot demonstrated that P. kurroa extract significantly altered the expression of p47phox, p67phox, gp91phox, IL-1 and TGFß-1. As a result of network pharmacology and docking work, new concepts for discovering bioactive compounds and effective modes of action could be developed. The potential effect of P. kurroa extract on DN disease was evident in the in-vitro studies aided by network pharmacology and molecular docking.Communicated by Ramaswamy H. Sarma.

3.
Cells ; 11(10)2022 05 19.
Article in English | MEDLINE | ID: mdl-35626720

ABSTRACT

Atopic dermatitis (AD), characterized by rashes, itching, and pruritus, is a chronic inflammatory condition of the skin with a marked infiltration of inflammatory cells into the lesion. It usually commences in early childhood and coexists with other atopic diseases such as allergic rhinitis, bronchial asthma, allergic conjunctivitis, etc. With a prevalence rate of 1-20% in adults and children worldwide, AD is gradually becoming a major health concern. Immunological aspects have been frequently focused on in the pathogenesis of AD, including the role of the epidermal barrier and the consequent abnormal cytokine expressions. Disrupted epidermal barriers, as well as allergic triggers (food allergy), contact allergens, irritants, microbes, aggravating factors, and ultraviolet light directly initiate the inflammatory response by inducing epidermal keratinocytes, resulting in the abnormal release of various pro-inflammatory mediators, inflammatory cytokines, and chemokines from keratinocytes. In addition, abnormal proteinases, gene mutations, or single nucleotide polymorphisms (SNP) affecting the function of the epidermal barrier can also contribute towards disease pathophysiology. Apart from this, imbalances in cholinergic or adrenergic responses in the epidermis or the role played by immune cells in the epidermis such as Langerhans cells or antigen-presenting cells can also aggravate pathophysiology. The dearth of specific biomarkers for proper diagnosis and the lack of a permanent cure for AD necessitate investigation in this area. In this context, the widespread role played by keratinocytes in the pathogenesis of AD will be reviewed in this article to facilitate the opening up of new avenues of treatment for AD.


Subject(s)
Dermatitis, Atopic , Food Hypersensitivity , Adult , Child , Child, Preschool , Cytokines , Dermatitis, Atopic/genetics , Epidermis , Food Hypersensitivity/pathology , Humans , Keratinocytes/pathology , Pruritus/pathology , Skin/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...