Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Metabolomics ; 20(2): 37, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459207

ABSTRACT

BACKGROUND: Lipids play key roles in numerous biological processes, including energy storage, cell membrane structure, signaling, immune responses, and homeostasis, making lipidomics a vital branch of metabolomics that analyzes and characterizes a wide range of lipid classes. Addressing the complex etiology, age-related risk, progression, inflammation, and research overlap in conditions like Alzheimer's Disease, Parkinson's Disease, Cardiovascular Diseases, and Cancer poses significant challenges in the quest for effective therapeutic targets, improved diagnostic markers, and advanced treatments. Mass spectrometry is an indispensable tool in clinical lipidomics, delivering quantitative and structural lipid data, and its integration with technologies like Liquid Chromatography (LC), Magnetic Resonance Imaging (MRI), and few emerging Matrix-Assisted Laser Desorption Ionization- Imaging Mass Spectrometry (MALDI-IMS) along with its incorporation into Tissue Microarray (TMA) represents current advances. These innovations enhance lipidomics assessment, bolster accuracy, and offer insights into lipid subcellular localization, dynamics, and functional roles in disease contexts. AIM OF THE REVIEW: The review article summarizes recent advancements in lipidomic methodologies from 2019 to 2023 for diagnosing major neurodegenerative diseases, Alzheimer's and Parkinson's, serious non-communicable cardiovascular diseases and cancer, emphasizing the role of lipid level variations, and highlighting the potential of lipidomics data integration with genomics and proteomics to improve disease understanding and innovative prognostic, diagnostic and therapeutic strategies. KEY SCIENTIFIC CONCEPTS OF REVIEW: Clinical lipidomic studies are a promising approach to track and analyze lipid profiles, revealing their crucial roles in various diseases. This lipid-focused research provides insights into disease mechanisms, biomarker identification, and potential therapeutic targets, advancing our understanding and management of conditions such as Alzheimer's Disease, Parkinson's Disease, Cardiovascular Diseases, and specific cancers.


Subject(s)
Alzheimer Disease , Cardiovascular Diseases , Neoplasms , Neurodegenerative Diseases , Parkinson Disease , Humans , Lipids/analysis , Metabolomics/methods , Alzheimer Disease/diagnosis , Neurodegenerative Diseases/diagnosis , Cardiovascular Diseases/diagnosis , Parkinson Disease/diagnosis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Neoplasms/diagnosis
2.
3 Biotech ; 13(3): 74, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36748015

ABSTRACT

An efficient in vitro protocol for high-frequency polyploidization for the first time in gerbera hybrid (BGC-2019-01) was developed in the present study. Two-week-old in vitro-developed shoots (tips) were treated individually with 0.1%, 0.25% and 0.5% (w/v) colchicine solutions for 4, 6, 8, and 12 h. The colchicine-treated shoot tips were then inoculated on Murashige and Skoog (MS) medium fortified with 1.5 mg/l meta-Topolin for multiple shoot proliferation and later transferred into 1.5 mg/l indole-3-acetic acid-fortified MS medium for rooting of shoots. The ploidy levels of the colchicine-treated and regenerated plantlets along with the non-treated ones were confirmed via flow cytometry analysis and metaphasic chromosome count. The highest frequency of tetraploid plantlets (50%) were obtained when shoot tips were treated with 0.1% colchicine for 4 h. Morphological observations revealed that induced tetraploid plantlets exhibited delayed fresh shoot initiation, fewer but longer shoots, as well as fewer but broader leaves. Likewise, the study of stomata revealed that in comparison to their diploid counterparts, the tetraploid plantlets exhibited less frequent yet significantly larger stomata, and higher number of chloroplasts. The tetraploids were recorded with significantly higher chlorophyll, carotenoid, and anthocyanin content during the photosynthetic pigment analyses. During ex vitro acclimatization and field growth, the tetraploid plants exhibited delayed proliferation but with higher vigor and thickened broad leaves. The genetic uniformity among the diploid and the tetraploid plants was confirmed using conserved DNA-derived polymorphism (CDDP), directed amplification of minisatellite-region DNA (DAMD), inter simple sequence repeats (ISSR), and start codon targeted (SCoT) polymorphism marker systems. The tetraploids developed in the present study would be of immense importance for the genetic improvement of gerbera as far as its ornamental values are concerned.

3.
3 Biotech ; 10(7): 294, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32547899

ABSTRACT

Rauvolfia serpentina (L.) Benth. ex Kurz., popularly known as Indian Snakeroot plant, belonging to Apocynaceae family, holds immense medicinal importance, owing to its rich source of multiple secondary metabolites such as ajmaline, ajmalicine, reserpine, and serpentine. To meet the constant demands for the key secondary metabolite (reserpine) by majority of the pharmaceutical industries, the present study assessed the effects of direct and indirect regeneration system on amelioration of reserpine accumulation in shoots of R. serpentina. In vitro multiple shoot cultures were established using shoot tip explants. Best results for shoot initiation, multiplication, and biomass production were obtained in case of Murashige and Skoog medium, supplemented with 1 mg/l N 6-benzyladenine. The multiple shoots were then sub-cultured on cytokinin-auxin combination media for further proliferation. Highest shoot and leaf multiplication rates and the most enhanced biomass were obtained in case of 1-1.5 mg/l Kinetin + 0.2 mg/l α-naphthalene acetic acid (NAA). Callus induction and its subsequent proliferation was obtained using 1.5 mg/l 2,4-dichlorophenoxyacetic acid. The best indirect shoot regeneration with highest shoot and leaf proliferation from calli was observed in case of 1 mg/l thidiazuron + 0.2 mg/l NAA. Reserpine content estimation via HPTLC from in vitro shoots (direct regeneration) and calli (indirect regeneration) were recorded to undergo an almost three-fold and two-fold increment (respectively) in comparison to that of the mother plant. Thus, in vitro direct regeneration system proved to be more effective and efficient in ameliorating the reserpine content.

4.
Appl Microbiol Biotechnol ; 104(11): 4811-4835, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32303816

ABSTRACT

Catharanthus roseus (L.) G. Don, also known as Madagascar periwinkle or Sadabahar, is a herbaceous plant belonging to the family Apocynaceae. Being a reservoir for more than 200 alkaloids, it reserves a place for itself in the list of important medicinal plants. Secondary metabolites are present in its leaves (e.g., vindoline, vinblastine, catharanthine, and vincristine) as well as basal stem and roots (e.g., ajmalicine, reserpine, serpentine, horhammericine, tabersonine, leurosine, catharanthine, lochnerine, and vindoline). Two of its alkaloids, vincristine and vinblastine (possessing anticancerous properties), are being used copiously in pharmaceutical industries. Till date, arrays of reports are available on in vitro biotechnological improvements of C. roseus. The present review article concentrates chiefly on various biotechnological advancements based on plant tissue culture techniques of the last three decades, for instance, regeneration via direct and indirect organogenesis, somatic embryogenesis, secondary metabolite production, synthetic seed production, clonal fidelity assessment, polyploidization, genetic transformation, and nanotechnology. It also portrays the importance of various factors influencing the success of in vitro biotechnological interventions in Catharanthus and further addresses several shortcomings that can be further explored to create a platform for upcoming innovative approaches. KEY POINTS: • C. roseus yields anticancerous vincristine and vinblastine used in pharma industry. •In vitro biotechnological interventions prompted major genetic advancements. • This review provides an insight on in vitro-based research achievements till date. • Key bottlenecks and prospective research methodologies have been identified herein.


Subject(s)
Alkaloids/isolation & purification , Biotechnology/trends , Catharanthus/chemistry , Plants, Medicinal/chemistry , Alkaloids/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Plant Leaves/chemistry , Plant Roots/chemistry , Secondary Metabolism , Vinblastine/chemistry , Vinblastine/isolation & purification , Vincristine/chemistry , Vincristine/isolation & purification
5.
Appl Microbiol Biotechnol ; 103(18): 7325-7354, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31363825

ABSTRACT

Rauvolfia spp., also known as devil peppers, are a group of evergreen shrubs and trees. Among the ~ 76 various species, Rauvolfia serpentina is the most important one as it finds its use as an important medicinal plant. It is commonly known as the Indian snakeroot plant or Sarpagandha. The plant is rich in multiple secondary metabolites. Some of the well-known secondary metabolites are reserpine, ajmaline, ajmalicine, serpentine, yohimbine, etc. Alkaloids are also found in all parts of the plant but the richest sources are the roots. Since ancient times, roots (mainly due to reserpine) have been utilized in various Ayurvedic and Unani medicinal preparations for the treatment of diseases like hypertension, anxiety, insomnia and schizophrenia. Apart from this, there are many other pharmacological and ethnobotanical uses of this plant. There are a number of published reports regarding tissue culture techniques on Rauvolfia spp. The current review mainly illustrates and discusses the various in vitro biotechnological aspects such as direct regeneration, indirect regeneration via callus formation, somatic embryogenesis, synthetic seed production, hairy root culture, polyploidy induction and secondary metabolite estimation, which provides significant ideas regarding the ongoing research activities and future prospects related to the genetic improvement of this genus.


Subject(s)
Biotechnology/trends , Plants, Medicinal/chemistry , Rauwolfia/chemistry , Medicine, Ayurvedic , Plant Roots/chemistry , Plants, Medicinal/genetics , Polyploidy , Rauwolfia/genetics , Secondary Metabolism , Tissue Culture Techniques
6.
3 Biotech ; 7(2): 93, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28555429

ABSTRACT

A number of dioecious species are grown across India and some of those plants play a crucial role in the agro-based economy of the country. The diagnosis of sex is very difficult in the dioecious plant prior flowering wherein sex identification at the seedling stage is of great importance to breeders as well as farmers for crop improvement or production purpose. A comprehensive approach of sex determination comprising morphological, biochemical, cytological and molecular attributes is a must required for gender differentiation in dioecious plant species. In the present review, we highlighted the economical, medicinal as well as industrial importance of most of the dioecious species extensively grown in Indian subcontinent. In addition to that, the cytogenetic, genetic as well as molecular information in connection to their sex determination were critically discussed in this review.

7.
Biotechnol Rep (Amst) ; 13: 26-29, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28352559

ABSTRACT

The present report explores the chromosomal patterns during meiosis as a fundamental cell division study in wild rice (Oryza rufipogon Griff.). Cytological assays revealed normal meiosis in most cases but in some instances meiotic abnormalities such as weak desynapsis, univalent and quadrivalent formation, translocation, spindle abnormalities and precocious movement of chromosomes were noticed. Interestingly, this wild species also has the bi-nucleoli in first meiotic stages alike the cultivated species of Oryza (O. sativa). The present investigation emphatically addresses the questions of high adaptability of wild rice supported by high pollen fertility for their potential to strong fitness in nature.

9.
Nature ; 521(7550): 65-9, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25951285

ABSTRACT

Internal gravity waves, the subsurface analogue of the familiar surface gravity waves that break on beaches, are ubiquitous in the ocean. Because of their strong vertical and horizontal currents, and the turbulent mixing caused by their breaking, they affect a panoply of ocean processes, such as the supply of nutrients for photosynthesis, sediment and pollutant transport and acoustic transmission; they also pose hazards for man-made structures in the ocean. Generated primarily by the wind and the tides, internal waves can travel thousands of kilometres from their sources before breaking, making it challenging to observe them and to include them in numerical climate models, which are sensitive to their effects. For over a decade, studies have targeted the South China Sea, where the oceans' most powerful known internal waves are generated in the Luzon Strait and steepen dramatically as they propagate west. Confusion has persisted regarding their mechanism of generation, variability and energy budget, however, owing to the lack of in situ data from the Luzon Strait, where extreme flow conditions make measurements difficult. Here we use new observations and numerical models to (1) show that the waves begin as sinusoidal disturbances rather than arising from sharp hydraulic phenomena, (2) reveal the existence of >200-metre-high breaking internal waves in the region of generation that give rise to turbulence levels >10,000 times that in the open ocean, (3) determine that the Kuroshio western boundary current noticeably refracts the internal wave field emanating from the Luzon Strait, and (4) demonstrate a factor-of-two agreement between modelled and observed energy fluxes, which allows us to produce an observationally supported energy budget of the region. Together, these findings give a cradle-to-grave picture of internal waves on a basin scale, which will support further improvements of their representation in numerical climate predictions.

10.
J Genet ; 93(3): 683-8, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25572226

ABSTRACT

Phosphate availability is a major factor limiting tillering, grain filling vis-á-vis productivity of rice. Rice is often cultivated in soil like red and lateritic or acid, with low soluble phosphate content. To identify the best genotype suitable for these types of soils, P acquisition efficiency was estimated from 108 genotypes. Gobindabhog, Tulaipanji, Radhunipagal and Raghusail accumulated almost equal amounts of phosphate even when they were grown on P-sufficient soil. Here, we have reported the presence as well as the expression of a previously characterized rice gene, phosphate starvation tolerance locus (PSTOL1) in a set of selected genotypes. Two of four genotypes did not show any detectable expression but carried the gene. One mega cultivar, Swarna did not possess this gene but showed high P-deficiency tolerance ability. Increase of root biomass, not length, in P-limiting situations might be considered as one of the selecting criteria at the seedling stage. Neither the presence of PSTOL1 gene nor its closely-linked SSR RM1261, showed any association with P-deficiency tolerance among the 108 genotypes. Not only this, but the presence of PSTOL1 in recombinant inbred line (RIL) developed from a cross between Gobindabhog and Satabdi, also did not show any linkage with P-deficiency tolerance ability. Thus, before considering PSTOL1 gene in MAB, its expression and role in P-deficiency tolerance in the donor parent must be ascertained.


Subject(s)
Oryza/genetics , Phosphates/metabolism , Plant Proteins/genetics , Quantitative Trait Loci/genetics , Genetic Linkage , Oryza/growth & development , Phosphates/chemistry , Plant Proteins/biosynthesis , Plant Roots/genetics , Plant Roots/growth & development , Seedlings/genetics , Soil/chemistry
11.
Phys Rev Lett ; 104(21): 218502, 2010 May 28.
Article in English | MEDLINE | ID: mdl-20867146

ABSTRACT

Three-dimensional direct numerical simulations are performed to examine nonlinear processes during the generation of internal tides on a model continental slope. An intense boundary flow is generated in the critical case where the slope angle is equal to the natural internal wave propagation angle. Wave steepening, that drives spanwise wave breaking via convective instability, occurs. Turbulence is present along the entire extent of the near-critical region of the slope. The turbulence is found to have a strong effect on the internal wave beam by distorting its near-slope structure. A complicated wave field with a broadband frequency spectrum is found. This work explains the formation of boundary turbulence during the generation of internal tides in the regime of low excursion numbers.

SELECTION OF CITATIONS
SEARCH DETAIL
...