Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters










Publication year range
1.
Braz. j. med. biol. res ; 44(5): 445-452, May 2011. ilus, tab
Article in English | LILACS | ID: lil-586508

ABSTRACT

Gadolinium (Gd) blocks intra- and extracellular ATP hydrolysis. We determined whether Gd affects vascular reactivity to contractile responses to phenylephrine (PHE) by blocking aortic ectonucleoside triphosphate diphosphohydrolase (E-NTPDase). Wistar rats of both sexes (260-300 g, 23 females, 7 males) were used. Experiments were performed before and after incubation of aortic rings with 3 µM Gd. Concentration-response curves to PHE (0.1 nM to 0.1 mM) were obtained in the presence and absence of endothelium, after incubation with 100 µM L-NAME, 10 µM losartan, or 10 µM enalaprilat. Gd significantly increased the maximum response (control: 72.3 ± 3.5; Gd: 101.3 ± 6.4 percent) and sensitivity (control: 6.6 ± 0.1; Gd: 10.5 ± 2.8 percent) to PHE. To investigate the blockade of E-NTDase activity by Gd, we added 1 mM ATP to the bath. ATP reduced smooth muscle tension and Gd increased its relaxing effect (control: -33.5 ± 4.1; Gd: -47.4 ± 4.1 percent). Endothelial damage abolished the effect of Gd on the contractile responses to PHE (control: 132.6 ± 8.6; Gd: 122.4 ± 7.1 percent). L-NAME + Gd in the presence of endothelium reduced PHE contractile responses (control/L-NAME: 151.1 ± 28.8; L-NAME + Gd: 67.9 ± 19 percent AUC). ATP hydrolysis was reduced after Gd administration, which led to ATP accumulation in the nutrient solution and reduced ADP concentration, while adenosine levels remained the same. Incubation with Gd plus losartan and enalaprilat eliminated the pressor effects of Gd. Gd increased vascular reactivity to PHE regardless of the reduction of E-NTPDase activity and adenosine production. Moreover, the increased reactivity to PHE promoted by Gd was endothelium-dependent, reducing NO bioavailability and involving an increased stimulation of angiotensin-converting enzyme and angiotensin II AT1 receptors.


Subject(s)
Animals , Female , Male , Rats , Aorta/drug effects , Gadolinium/pharmacology , Phenylephrine/pharmacology , Vasoconstriction/drug effects , Vasodilation/drug effects , Antihypertensive Agents/pharmacology , Aorta/physiology , Dose-Response Relationship, Drug , Enalaprilat/pharmacology , Endothelium, Vascular/drug effects , Losartan/pharmacology , NG-Nitroarginine Methyl Ester/pharmacology , Rats, Wistar , Vasoconstriction/physiology , Vasodilation/physiology
2.
Braz J Med Biol Res ; 44(5): 445-52, 2011 May.
Article in English | MEDLINE | ID: mdl-21445527

ABSTRACT

Gadolinium (Gd) blocks intra- and extracellular ATP hydrolysis. We determined whether Gd affects vascular reactivity to contractile responses to phenylephrine (PHE) by blocking aortic ectonucleoside triphosphate diphosphohydrolase (E-NTPDase). Wistar rats of both sexes (260-300 g, 23 females, 7 males) were used. Experiments were performed before and after incubation of aortic rings with 3 µM Gd. Concentration-response curves to PHE (0.1 nM to 0.1 mM) were obtained in the presence and absence of endothelium, after incubation with 100 µM L-NAME, 10 µM losartan, or 10 µM enalaprilat. Gd significantly increased the maximum response (control: 72.3 ± 3.5; Gd: 101.3 ± 6.4%) and sensitivity (control: 6.6 ± 0.1; Gd: 10.5 ± 2.8%) to PHE. To investigate the blockade of E-NTDase activity by Gd, we added 1 mM ATP to the bath. ATP reduced smooth muscle tension and Gd increased its relaxing effect (control: -33.5 ± 4.1; Gd: -47.4 ± 4.1%). Endothelial damage abolished the effect of Gd on the contractile responses to PHE (control: 132.6 ± 8.6; Gd: 122.4 ± 7.1%). L-NAME + Gd in the presence of endothelium reduced PHE contractile responses (control/L-NAME: 151.1 ± 28.8; L-NAME + Gd: 67.9 ± 19% AUC). ATP hydrolysis was reduced after Gd administration, which led to ATP accumulation in the nutrient solution and reduced ADP concentration, while adenosine levels remained the same. Incubation with Gd plus losartan and enalaprilat eliminated the pressor effects of Gd. Gd increased vascular reactivity to PHE regardless of the reduction of E-NTPDase activity and adenosine production. Moreover, the increased reactivity to PHE promoted by Gd was endothelium-dependent, reducing NO bioavailability and involving an increased stimulation of angiotensin-converting enzyme and angiotensin II AT1 receptors.


Subject(s)
Aorta/drug effects , Gadolinium/pharmacology , Phenylephrine/pharmacology , Vasoconstriction/drug effects , Vasodilation/drug effects , Animals , Antihypertensive Agents/pharmacology , Aorta/physiology , Dose-Response Relationship, Drug , Enalaprilat/pharmacology , Endothelium, Vascular/drug effects , Female , Losartan/pharmacology , Male , NG-Nitroarginine Methyl Ester/pharmacology , Rats , Rats, Wistar , Vasoconstriction/physiology , Vasodilation/physiology
3.
Biochim Biophys Acta ; 1770(8): 1259-65, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17574764

ABSTRACT

In this study, we evaluated the NTPDases and ecto-5'-nucleotidase (CD73) expression profiles and the pattern of adenine nucleotide hydrolysis in rats submitted to the Walker 256 tumor model, 6, 10 and 15 days after the subcutaneous inoculation. Using RT-PCR analysis, we identified mRNA for all of the members of the ecto-nucleoside triphosphate diphosphohydrolase family investigated and a 5'-nucleotidase. By quantitative real-time PCR, Entpd1 (Cd39) and Entpd2 (Cd39L1) and CD73 were identified as the dominant genes expressed by the Walker 256 tumor, at all times studied. Extracellular adenine nucleotide hydrolysis by the Walker 256 tumor was estimated by HPLC analysis. Rapid hydrolysis of extracellular ATP by the tumor cells was observed, leading to the formation of adenosine and inosine in cells obtained from solid tumors at 6 and 10 days after inoculation. Cells obtained from solid tumors at 15 days of growth presented high levels of AMP and presented adenosine as a final product after 90 min of incubation. Results demonstrate that the presence of NTPDases and 5'-nucleotidase enzymes in Walker 256 tumor cells may be important for regulation of the extracellular adenine nucleotides/adenine nucleoside ratio, therefore leading to tumor growth.


Subject(s)
5'-Nucleotidase/metabolism , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Antigens, CD/metabolism , Apyrase/metabolism , Carcinoma 256, Walker/enzymology , Animals , Cell Line, Tumor , Male , Rats , Rats, Wistar
4.
Neurochem Res ; 31(5): 693-8, 2006 May.
Article in English | MEDLINE | ID: mdl-16770741

ABSTRACT

Neonatal handled rats ingest more sweet food than non-handled ones, but it was documented only after puberty. Here, we studied the purinergic system in the nucleus accumbens, a possible target for the alteration in the preference for palatable food. We measured the ATP, ADP and AMP hydrolysis mediated by ectonucleotidases in synaptosomes of the nucleus accumbens in periadolescent and adult rats from different neonatal environments: non-handled and handled (10 min/day, first 10 days of life). Before adolescence, we found a decreased ingestion of sweet food in the neonatally handled group, with no effect on ATP, ADP or AMP hydrolysis. In adults, we found a greater ingestion of sweet food in the neonatally handled group, with no effect on ATPase or ADPase activities, but a decreased AMP hydrolysis. The nucleus accumbens is a site of intensive interaction between the adenosinergic and dopaminergic systems. Therefore, adenosine may modulate accumbens' dopamine neurotransmission differently in neonatally handled rats.


Subject(s)
Aging/physiology , Animals, Newborn , Dietary Sucrose , Eating , Handling, Psychological , Nucleotidases/metabolism , Nucleus Accumbens/enzymology , Animals , Female , Male , Phosphoric Monoester Hydrolases , Pregnancy , Rats
5.
Parasitology ; 131(Pt 1): 71-8, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16038398

ABSTRACT

Trichomonas vaginalis is a parasitic protozoan that causes trichomonosis, a sexually-transmitted disease, with serious sequelae to women and men. As the host-parasite relationship is complex, it is important to investigate biochemical aspects of the parasite that contribute to our understanding of trichomonal biology and pathogenesis. Nucleoside triphosphate diphosphohydrolase 1 (NTPDase 1), which hydrolyses extracellular ATP and ADP, and ecto-5'-nucleotidase, which hyrolyses AMP, have been characterized in laboratory isolates of T. vaginalis. Here we show that the extracellular ATP: ADP hydrolysis ratio varies among fresh clinical isolates, which presented higher ATPase and ADPase activities than long-term-grown isolates. Growth of parasites in iron-replete and iron-depleted medium resulted in different, albeit minor, patterns in extracellular ATP and ADP hydrolysis among isolates. Importantly, some isolates had low or absent ecto-5'-nucleotidase activity, regardless of environmental conditions tested. For isolates with ecto-5'-nucleotidase activity, high- and low-iron trichomonads had increased and decreased levels of activity, respectively, compared to organisms grown in normal TYM-serum medium. This suggests a regulation in expression of either the enzyme amounts and/or activity under the control of iron. Finally, we found no correlation between the presence or absence of dsRNA virus infection among trichomonad isolates and NTPDase and ecto-5'-nucleotidase activities.


Subject(s)
5'-Nucleotidase/metabolism , Antigens, CD/metabolism , Apyrase/metabolism , Trichomonas vaginalis/enzymology , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Animals , Culture Media , Dose-Response Relationship, Drug , Iron/pharmacology
6.
Amino Acids ; 29(3): 267-72, 2005 Nov.
Article in English | MEDLINE | ID: mdl-15977041

ABSTRACT

The main objective of the present study was to evaluate the in vivo and in vitro effect of Arg on serum nucleotide hydrolysis. The action of Nomega-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide synthase, on the effects produced by Arg was also examined. Sixty-day-old rats were treated with a single or a triple (with an interval of 1 h between each injection) intraperitoneal injection of saline (group I), Arg (0.8 g/kg) (group II), L-NAME (2.0 mg/kg or 20 mg/kg) (group III) or Arg (0.8 g/kg) plus L-NAME (2.0 mg/kg or 20 mg/kg) (group IV) and were killed 1 h later. The present results show that a triple Arg administration decreased ATP, ADP and AMP hydrolysis. Simultaneous injection of L-NAME (20 mg/kg) prevented such effects. Arg in vitro did not alter nucleotide hydrolysis. It is suggested that in vivo Arg administration reduces nucleotide hydrolysis in rat serum, probably through nitric oxide or/and peroxynitrite formation.


Subject(s)
Arginine/antagonists & inhibitors , Hyperargininemia/blood , NG-Nitroarginine Methyl Ester/administration & dosage , Nucleotides/metabolism , Adenosine Diphosphate/blood , Adenosine Diphosphate/metabolism , Adenosine Monophosphate/blood , Adenosine Monophosphate/metabolism , Adenosine Triphosphate/blood , Adenosine Triphosphate/metabolism , Animals , Arginine/administration & dosage , Hydrolysis/drug effects , In Vitro Techniques , Male , Nucleotides/blood , Rats , Rats, Wistar
7.
Comp Biochem Physiol C Toxicol Pharmacol ; 135C(3): 269-75, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12927901

ABSTRACT

Mercury reduces twitch and tetanic force development in isolated rat papillary muscles, and a putative toxic effect on the contractile machinery has been suggested. Based on that, the actions of HgCl2 on the myosin ATPase activity of the left ventricular myocardium were investigated. Samples for assay of myosin ATPase activity were obtained from rats' left ventricles. Increasing concentrations of HgCl2 reduced dose-dependently the activity of the myosin ATPase. This reduction was observed even at very small concentrations, 50 nM HgCl2. This effect was dependent on the presence of SH groups in the myosin molecule since DTT and glutathione protected the myosin ATPase against toxic effects of mercury; full activity being restored by using 500 nM DTT or 500 nM glutathione. Results also suggested that the metal acts as an uncompetitive inhibitor with a Ki of 200 nM HgCl2. Our results suggest that mercury reduces the activity of the myosin ATPase by an uncompetitive mechanism at a very low dose that does not depress force. DTT and glutathione are effective for protection against the actions of mercury suggesting that SH groups might be the sites of action of the metal on the myosin molecule.


Subject(s)
Mercuric Chloride/toxicity , Myocardium/enzymology , Myosins/antagonists & inhibitors , Myosins/metabolism , Animals , Dose-Response Relationship, Drug , Enzyme Inhibitors/toxicity , Heart Ventricles/drug effects , Heart Ventricles/enzymology , Male , Rats , Rats, Wistar
8.
Mol Cell Endocrinol ; 205(1-2): 107-14, 2003 Jul 31.
Article in English | MEDLINE | ID: mdl-12890572

ABSTRACT

Thyroid hormones have profound effects on the central nervous system, such as proliferation, secretion of growth factors and gene expression regulation. Ecto-NTPDases and ecto-5'-nucleotidase can control the extracellular ATP/adenosine levels, which have been described as proliferation factors. Here, we investigated the influence of T(3) on the enzyme cascade which catalyzes interconversion of purine nucleotides in rat C6 glioma cells. Exposure of C6 cells to T(3) caused a dose dependent increase of 30% in the AMP hydrolysis up to 0.25 nM, which was suppressed by actinomycin. No significant alteration was observed on ATP/ADP hydrolysis and T(4) at higher concentrations (10-1000 nM) promoted an increase in AMP hydrolysis that was not dose dependent. T(3) treatment also increased the expression of CD73 mRNA. Besides the importance of the ecto-5'-NT in the cell proliferation and differentiation, its overexpression can enhance extracellular adenosine levels, which could also be an important proliferation signal.


Subject(s)
5'-Nucleotidase/metabolism , Glioma/enzymology , Thyroxine/pharmacology , Triiodothyronine/pharmacology , 5'-Nucleotidase/genetics , Animals , Cell Line, Tumor , Dactinomycin/pharmacology , Dose-Response Relationship, Drug , RNA, Messenger/metabolism , Rats , Reverse Transcriptase Polymerase Chain Reaction , Thyroxine/metabolism , Triiodothyronine/metabolism , Up-Regulation
9.
Amino Acids ; 24(4): 383-8, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12768500

ABSTRACT

The nucleotide (ATP-ADP)/nucleoside (adenosine) ratio in the circulation can modulate the processes of vasoconstriction, vasodilatation and platelet aggregation. The main objective of the present study with rat blood serum was to evaluate the possibility of changes in nucleotide hydrolysis by phenylalanine (Phe) and phenylpyruvate (PP), the levels of which could increase in the circulation of individuals with phenylketonuria. Results demonstrated that Phe in the range 1.0-5.0 mM inhibited the ADP hydrolysis by rat serum. The effect of inhibition by Phe on ATP hydrolysis appeared only at a concentration of 5.0 mM. PP had no significant effect upon nucleotide hydrolysis. Kinetic analysis indicated that the inhibition of ADP and ATP hydrolysis by Phe in rat blood serum is uncompetitive. Conversely, Phe and PP did not affect the hydrolysis of p-nitrophenyl-5'-TMP by rat serum.


Subject(s)
Adenosine Diphosphate/blood , Adenosine Triphosphate/blood , Phenylalanine/metabolism , Phenylpyruvic Acids/metabolism , Animals , Apyrase/antagonists & inhibitors , Apyrase/metabolism , Hydrolysis , Kinetics , Male , Rats , Rats, Wistar
10.
Platelets ; 14(1): 47-52, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12623446

ABSTRACT

ATP diphosphohydrolase is an enzyme described in platelets and may be related to the control of ADP-dependent platelet aggregation. Platelet aggregation in atherosclerotic coronary arteries, and the release of platelet-derived factors, play an important role in coronary artery disease syndromes. In this study, we determined the activity of ATP diphosphohydrolase in platelets from patients with chronic and acute coronary artery disease syndromes and healthy persons. The following groups were studied: healthy persons (group I), patients with chronic heart disease (group II) and acute heart disease (group III). Results did not demonstrate differences between the groups studied. The control group demonstrated a lower range of enzyme activity. The patients from groups II and III had ingested drugs with actions upon the cardiovascular system and the effect, in vitro, of these drugs upon the ATP diphosphohydrolase activity in human platelets was also investigated. The in vitro experiments demonstrated that 2.0 mM acetylsalicylic acid inhibited ATP hydrolysis by human platelets by approximately 55%. Significant correlation was observed between ADP hydrolysis and glucose blood levels in the control group and between ATP hydrolysis and triglycerides in the group II. These results contribute to our understanding of a possible relationship between ATP diphosphohydrolase and thrombogenesis.


Subject(s)
Apyrase/metabolism , Blood Platelets/enzymology , Coronary Artery Disease/blood , Acute Disease , Adult , Aged , Apyrase/antagonists & inhibitors , Aspirin/pharmacology , Blood Glucose , Case-Control Studies , Chronic Disease , Coronary Artery Disease/etiology , Female , Humans , Male , Middle Aged , Thrombosis/etiology , Triglycerides/blood
11.
Int J Dev Neurosci ; 19(7): 649-53, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11705669

ABSTRACT

The main objective of the present study was to characterize the inhibition by phenylalanine and phenylpyruvate of ATP diphosphohydrolase activity in synaptosomes from the brain cortex of rats. This enzyme participates together with a 5'-nucleotidase in adenosine formation from the neurotransmitter, ATP, in the synaptic cleft. The inhibition of ATP diphosphohydrolase was competitive for nucleotide hydrolysis but 5'-nucleotidase was not affected by these metabolites. Furthermore, the two substances inhibited enzyme activity by acting at the same binding site. If the enzyme inhibition observed in vitro also occurs in the brain of PKU patients, it may promote an increase in ATP levels in the synaptic cleft. In this case, the neurotoxicity of ATP could possibly be one of the mechanisms leading to the characteristic brain damage of phenylketonuria.


Subject(s)
Adenosine Triphosphate/metabolism , Apyrase/metabolism , Cerebral Cortex/enzymology , Phenylalanine/metabolism , Phenylketonurias/enzymology , Phenylpyruvic Acids/metabolism , Presynaptic Terminals/enzymology , 5'-Nucleotidase/antagonists & inhibitors , 5'-Nucleotidase/metabolism , Adenosine/biosynthesis , Adenosine Diphosphate/metabolism , Animals , Apyrase/antagonists & inhibitors , Cerebral Cortex/drug effects , Cerebral Cortex/physiopathology , Hydrolysis/drug effects , Kinetics , Phenylalanine/pharmacology , Phenylketonurias/physiopathology , Phenylpyruvic Acids/pharmacology , Presynaptic Terminals/drug effects , Rats , Rats, Wistar , Synaptosomes
12.
Braz J Med Biol Res ; 34(10): 1247-56, 2001 Oct.
Article in English | MEDLINE | ID: mdl-11593298

ABSTRACT

Sertoli cells have been shown to be targets for extracellular purines such as ATP and adenosine. These purines evoke responses in Sertoli cells through two subtypes of purinoreceptors, P2Y2 and P A1. The signals to purinoreceptors are usually terminated by the action of ectonucleotidases. To demonstrate these enzymatic activities, we cultured rat Sertoli cells for four days and then used them for different assays. ATP, ADP and AMP hydrolysis was estimated by measuring the Pi released using a colorimetric method. Adenosine deaminase activity (EC 3.5.4.4) was determined by HPLC. The cells were not disrupted after 40 min of incubation and the enzymatic activities were considered to be ectocellularly localized. ATP and ADP hydrolysis was markedly increased by the addition of divalent cations to the reaction medium. A competition plot demonstrated that only one enzymatic site is responsible for the hydrolysis of ATP and ADP. This result indicates that the enzyme that acts on the degradation of tri- and diphosphate nucleosides on the surface of Sertoli cells is a true ATP diphosphohydrolase (EC 3.6.1.5) (specific activities of 113 +/- 6 and 21 +/- 2 nmol Pi mg(-1) min(-1) for ATP and ADP, respectively). The ecto-5'-nucleotidase (EC 3.1.3.5) and ectoadenosine deaminase activities (specific activities of 32 +/- 2 nmol Pi mg(-1) min(-1) for AMP and 1.52 +/- 0.13 nmol adenosine mg(-1) min(-1), respectively) were shown to be able to terminate the effects of purines and may be relevant for the physiological control of extracellular levels of nucleotides and nucleosides inside the seminiferous tubules.


Subject(s)
5'-Nucleotidase/metabolism , Adenine Nucleotides/metabolism , Sertoli Cells/enzymology , Adenosine Deaminase/metabolism , Adenosine Diphosphate/metabolism , Adenosine Monophosphate/metabolism , Adenosine Triphosphate/metabolism , Animals , Chromatography, High Pressure Liquid/methods , Hydrolysis , Male , Rats , Rats, Wistar
13.
Braz. j. med. biol. res ; 34(10): 1247-1256, Oct. 2001. tab, graf
Article in English | LILACS | ID: lil-299840

ABSTRACT

Sertoli cells have been shown to be targets for extracellular purines such as ATP and adenosine. These purines evoke responses in Sertoli cells through two subtypes of purinoreceptors, P2Y2 and P A1. The signals to purinoreceptors are usually terminated by the action of ectonucleotidases. To demonstrate these enzymatic activities, we cultured rat Sertoli cells for four days and then used them for different assays. ATP, ADP and AMP hydrolysis was estimated by measuring the Pi released using a colorimetric method. Adenosine deaminase activity (EC 3.5.4.4) was determined by HPLC. The cells were not disrupted after 40 min of incubation and the enzymatic activities were considered to be ectocellularly localized. ATP and ADP hydrolysis was markedly increased by the addition of divalent cations to the reaction medium. A competition plot demonstrated that only one enzymatic site is responsible for the hydrolysis of ATP and ADP. This result indicates that the enzyme that acts on the degradation of tri- and diphosphate nucleosides on the surface of Sertoli cells is a true ATP diphosphohydrolase (EC 3.6.1.5) (specific activities of 113 + or - 6 and 21 + or - 2 nmol Pi mg-1 min-1 for ATP and ADP, respectively). The ecto-5'-nucleotidase (EC 3.1.3.5) and ectoadenosine deaminase activities (specific activities of 32 + or - 2 nmol Pi mg-1 min-1 for AMP and 1.52 + or - 0.13 nmol adenosine mg-1 min-1, respectively) were shown to be able to terminate the effects of purines and may be relevant for the physiological control of extracellular levels of nucleotides and nucleosides inside the seminiferous tubules


Subject(s)
Animals , Male , Rats , 5'-Nucleotidase , Adenine Nucleotides , Sertoli Cells , Adenosine Deaminase , Adenosine Diphosphate , Adenosine Monophosphate , Adenosine Triphosphate , Chromatography, High Pressure Liquid , Hydrolysis , Rats, Wistar
14.
Brain Res Bull ; 55(4): 469-73, 2001 Jul 01.
Article in English | MEDLINE | ID: mdl-11543946

ABSTRACT

Extracellular adenine nucleotides acting as signaling molecules are inactivated by hydrolysis catalyzed by ectonucleotidases. Adenosine triphosphate (ATP) diphosphohydrolase (apyrase, EC 3.6.1.5) and 5'-nucleotidase (EC 3.1.3.5) are involved in an enzymatic chain for the hydrolysis of ATP to adenosine in the synaptic cleft. In this study, we investigated the in vitro effect of nitric oxide (NO) donors on extracellular ATP, adenosine diphosphate (ADP), and adenosine monophosphate (AMP) catabolism in hippocampal synaptosomes of rats. We evaluated the effect of the incubation time on ATP, ADP, and AMP hydrolysis in the absence and in the presence of 1 mM sodium nitroprusside (SNP). The inhibitory effect of SNP increased with the incubation time and the maximal inhibition was observed after 180 min for both enzyme activities. The inhibition observed attained a maximum at 1 mM SNP for ATP, ADP, and AMP hydrolysis, with the enzyme activities being markedly reduced at this concentration of SNP. However, other NO donors tested, such as S-nitroso-N-acetyl-penicillamine and isosorbide dinitrate, did not affect the enzyme activities. The effect of the NO donor, SNP, on extracellular ATP and ADP catabolism was increased by the addition of the thiol glutathione but this effect was not observed on extracellular AMP catabolism. The results suggest that the increased production of NO could have a modulatory role on the ectonucleotidase activities.


Subject(s)
Adenine Nucleotides/metabolism , Hippocampus/metabolism , Nitric Oxide Donors/pharmacology , Nitroprusside/pharmacology , Synaptosomes/enzymology , Adenosine Diphosphate/metabolism , Adenosine Monophosphate/metabolism , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Animals , Apyrase/metabolism , Extracellular Space/metabolism , Male , Nitric Oxide/metabolism , Rats , Rats, Wistar
15.
Neuropsychobiology ; 44(2): 99-102, 2001.
Article in English | MEDLINE | ID: mdl-11490180

ABSTRACT

In the search for differential mechanisms underlying clozapine's superior antipsychotic efficacy, the purinergic system has been considered, since an antagonist of the adenosine receptor A(2A) was shown to block clozapine acute effects on c-fos expression in rat striatum. Further investigating the interaction of clozapine with the purinergic system, we studied the effects of chronic treatment (28 days, intraperitoneal) with clozapine (25 mg/kg) and haloperidol (1.5 mg/kg) on the activity of ectonucleotidases in the striatum and hippocampus of rats. Clozapine selectively increased striatal 5'-nucleotidase activity (22%) compared to control and haloperidol groups. In vitro, neither drug affected enzyme activities. These results reinforce the differential effects of clozapine compared to haloperidol on the purinergic system.


Subject(s)
5'-Nucleotidase/metabolism , Antipsychotic Agents/pharmacology , Clozapine/pharmacology , Haloperidol/pharmacology , Neostriatum/enzymology , Adenosine Diphosphate/metabolism , Adenosine Monophosphate/metabolism , Adenosine Triphosphate/metabolism , Animals , Hippocampus/drug effects , Hippocampus/metabolism , Hydrolysis , Male , Neostriatum/drug effects , Rats , Rats, Wistar , Synaptosomes/drug effects , Synaptosomes/metabolism
16.
Neurosci Lett ; 301(1): 72-4, 2001 Mar 23.
Article in English | MEDLINE | ID: mdl-11239719

ABSTRACT

Animals lacking cellular prion protein (PrP(c)) expression are more susceptible to seizures. Adenosine is an endogenous anticonvulsant agent and it levels in the synaptic cleft are regulated by ectonucleotidases. We evaluated ectonucleotidase activities in synaptosomes from hippocampus and cerebral cortex of adult PrP(c) null mice and wild-type mice (genetic background 129/Sv X C57BL/6J). There was an increase (47%) in adenosine triphosphate (ATP) hydrolysis in hippocampal synaptosomes of PrP(c) knockout mice as compared with the wild-type animals. In cortical synaptosomes, ATP hydrolysis was similar in both PrP(c) mice and controls. However, there was a significant decrease in adenosine diphosphate (ADP) hydrolysis in both hippocampal (-39%) and cortical (-25%) synaptosomes in PrP(c) null animals compared to wild-type mice. Changes in brain ectonucleotidases activities related to modifications in the PrP(c) expression may contribute, at least in part, to the higher sensitivity to seizures of PrP(c) null mice.


Subject(s)
Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Cerebral Cortex/metabolism , Hippocampus/metabolism , Nucleotidases/metabolism , Prions , Animals , Hydrolysis , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Prions/genetics , Synaptosomes/metabolism
17.
Mol Cell Biochem ; 213(1-2): 11-6, 2000 Oct.
Article in English | MEDLINE | ID: mdl-11129948

ABSTRACT

Ecto-apyrase is a transmembrane glycoprotein that hydrolyzes extracellular nucleoside tri- or diphosphates. Apyrase activity is affected by several physiological and pathological conditions indicating the existence of regulatory mechanisms. Considering that apyrase presents consensus phosphorylation sites, we studied the phosphorylation of this enzyme. We found an overlay of the immunoblotting and phosphorylated bands in three different preparations from rat brain: (a) hippocampal slices, (b) synaptic plasma membrane fragments and (c) cultured astrocytes. In addition, two-dimensional electrophoresis separations with human astrocytoma cells were done to identify unequivocally the coincidence between the immunodetected and phosphorylated protein. These observations indicate that apyrase can be detected as a phosphoprotein, with obvious implications in the regulation of this enzyme.


Subject(s)
Apyrase/chemistry , Hippocampus/chemistry , Phosphoproteins/chemistry , Animals , Apyrase/metabolism , Astrocytoma , Electrophoresis, Polyacrylamide Gel , Humans , Immunoblotting , Immunohistochemistry , Phosphoproteins/metabolism , Phosphorylation , Rats , Tumor Cells, Cultured
18.
Braz. j. med. biol. res ; 33(11): 1369-77, Nov. 2000. tab, graf
Article in English | LILACS | ID: lil-273214

ABSTRACT

The effects of transient forebrain ischemia, reperfusion and ischemic preconditioning on rat blood platelet ATP diphosphohydrolase and 5'-nucleotidase activities were evaluated. Adult Wistar rats were submitted to 2 or 10 min of single ischemic episodes, or to 10 min of ischemia 1 day after a 2-min ischemic episode (ischemic preconditioning) by the four-vessel occlusion method. Rats submitted to single ischemic insults were reperfused for 60 min and for 1, 2, 5, 10 and 30 days after ischemia; preconditioned rats were reperfused for 60 min 1 and 2 days after the long ischemic episode. Brain ischemia (2 or 10 min) inhibited ATP and ADP hydrolysis by platelet ATP diphosphohydrolase. On the other hand, AMP hydrolysis by 5'-nucleotidase was increased after 2, but not 10, min of ischemia. Ischemic preconditioning followed by 10 min of ischemia caused activation of both enzymes. Variable periods of reperfusion distinctly affected each experimental group. Enzyme activities returned to control levels in the 2-min group. However, the decrease in ATP diphosphohydrolase activity was maintained up to 30 days of reperfusion after 10-min ischemia. 5'-Nucleotidase activity was decreased 60 min and 1 day following 10-min ischemia; interestingly, enzymatic activity was increased after 2 and 5 days of reperfusion, and returned to control levels after 10 days. Ischemic preconditioning cancelled the effects of 10-min ischemia on the enzymatic activities. These results indicate that brain ischemia and ischemic preconditioning induce peripheral effects on ecto-enzymes from rat platelets involved in nucleotide metabolism. Thus, ATP, ADP and AMP degradation and probably the generation of adenosine in the circulation may be altered, leading to regulation of microthrombus formation since ADP aggregates platelets and adenosine is an inhibitor of platelet aggregation


Subject(s)
Animals , Rats , Male , 5'-Nucleotidase/metabolism , Apyrase/metabolism , Blood Platelets/chemistry , Brain Ischemia/enzymology , Analysis of Variance , Ischemic Preconditioning , Rats, Wistar , Time Factors
19.
Braz J Med Biol Res ; 33(11): 1369-77, 2000 Nov.
Article in English | MEDLINE | ID: mdl-11050670

ABSTRACT

The effects of transient forebrain ischemia, reperfusion and ischemic preconditioning on rat blood platelet ATP diphosphohydrolase and 5'-nucleotidase activities were evaluated. Adult Wistar rats were submitted to 2 or 10 min of single ischemic episodes, or to 10 min of ischemia 1 day after a 2-min ischemic episode (ischemic preconditioning) by the four-vessel occlusion method. Rats submitted to single ischemic insults were reperfused for 60 min and for 1, 2, 5, 10 and 30 days after ischemia; preconditioned rats were reperfused for 60 min 1 and 2 days after the long ischemic episode. Brain ischemia (2 or 10 min) inhibited ATP and ADP hydrolysis by platelet ATP diphosphohydrolase. On the other hand, AMP hydrolysis by 5'-nucleotidase was increased after 2, but not 10, min of ischemia. Ischemic preconditioning followed by 10 min of ischemia caused activation of both enzymes. Variable periods of reperfusion distinctly affected each experimental group. Enzyme activities returned to control levels in the 2-min group. However, the decrease in ATP diphosphohydrolase activity was maintained up to 30 days of reperfusion after 10-min ischemia. 5'-Nucleotidase activity was decreased 60 min and 1 day following 10-min ischemia; interestingly, enzymatic activity was increased after 2 and 5 days of reperfusion, and returned to control levels after 10 days. Ischemic preconditioning cancelled the effects of 10-min ischemia on the enzymatic activities. These results indicate that brain ischemia and ischemic preconditioning induce peripheral effects on ecto-enzymes from rat platelets involved in nucleotide metabolism. Thus, ATP, ADP and AMP degradation and probably the generation of adenosine in the circulation may be altered, leading to regulation of microthrombus formation since ADP aggregates platelets and adenosine is an inhibitor of platelet aggregation.


Subject(s)
5'-Nucleotidase/metabolism , Apyrase/metabolism , Blood Platelets/chemistry , Brain Ischemia/enzymology , Analysis of Variance , Animals , Brain Ischemia/blood , Ischemic Preconditioning , Male , Rats , Rats, Wistar , Time Factors
20.
Neurochem Res ; 25(6): 775-9, 2000 Jun.
Article in English | MEDLINE | ID: mdl-10943995

ABSTRACT

The ectonucleotidase pathway is an important metabolic source of extracellular adenosine. Adenosine has potent anticonvulsant effects on various models of epilepsy. One of these models is pentylenetetrazol (PTZ) kindling, in which repeated administration of subconvulsive doses of this drug induces progressive intensification of seizure activity. In this study, we examine the effect of a single convulsive injection (60 mg/kg, i.p.) or 10 successive (35 mg/kg, i.p.) injections of PTZ on synaptosomal ectonucleotidases. Our results have shown that no changes in ectonucleotidase activities were seen at 0, 1, and 24 h or at 5 days after a single convulsive PTZ injection. However, after PTZ-kindling, rats which were more resistant to seizure development presented an increase in ATP hydrolysis in synaptosomes from hippocampus and cerebral cortex (44% and 28%, respectively). These results suggest that changes in nucleotide hydrolysis may represent an important mechanism in the modulation of chronic epileptic activity in this model.


Subject(s)
Adenosine Triphosphate/metabolism , Cerebral Cortex/metabolism , Hippocampus/metabolism , Kindling, Neurologic/drug effects , Pentylenetetrazole/pharmacology , Synaptosomes/metabolism , Animals , Female , Hydrolysis , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...