Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Int J Mol Sci ; 21(8)2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32295203

ABSTRACT

(1) Background: RX-3117 (fluorocyclopentenyl-cytosine) is a cytidine analog that inhibits DNA methyltransferase 1 (DNMT1). We investigated the mechanism and potential of RX-3117 as a demethylating agent in several in vitro models. (2) Methods: we used western blotting to measure expression of several proteins known to be down-regulated by DNA methylation: O6-methylguanine-DNA methyltransferase (MGMT) and the tumor-suppressor genes, p16 and E-cadherin. Transport of methotrexate (MTX) mediated by the proton-coupled folate transporter (PCFT) was used as a functional assay. (3) Results: RX-3117 treatment decreased total DNA-cytosine-methylation in A549 non-small cell lung cancer (NSCLC) cells, and induced protein expression of MGMT, p16 and E-cadherin in A549 and SW1573 NSCLC cells. Leukemic CCRF-CEM cells and the MTX-resistant variant (CEM/MTX, with a deficient reduced folate carrier) have a very low expression of PCFT due to promoter hypermethylation. In CEM/MTX cells, pre-treatment with RX-3117 increased PCFT-mediated MTX uptake 8-fold, and in CEM cells 4-fold. With the reference hypomethylating agent 5-aza-2'-deoxycytidine similar values were obtained. RX-3117 also increased PCFT gene expression and PCFT protein. (4) Conclusion: RX-3117 down-regulates DNMT1, leading to hypomethylation of DNA. From the increased protein expression of tumor-suppressor genes and functional activation of PCFT, we concluded that RX-3117 might have induced hypomethylation of the promotor.


Subject(s)
Cytidine/analogs & derivatives , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , Proton-Coupled Folate Transporter/metabolism , Tumor Suppressor Proteins/metabolism , Cell Line, Tumor , Cytidine/pharmacology , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA Methylation/drug effects , Dose-Response Relationship, Drug , Gene Expression Regulation/drug effects , Humans , Methotrexate/pharmacology , Proton-Coupled Folate Transporter/genetics , Tumor Suppressor Proteins/genetics
2.
Nat Commun ; 10(1): 1787, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30992437

ABSTRACT

The identity and unique capacity of cancer stem cells (CSC) to drive tumor growth and resistance have been challenged in brain tumors. Here we report that cells expressing CSC-associated cell membrane markers in Glioblastoma (GBM) do not represent a clonal entity defined by distinct functional properties and transcriptomic profiles, but rather a plastic state that most cancer cells can adopt. We show that phenotypic heterogeneity arises from non-hierarchical, reversible state transitions, instructed by the microenvironment and is predictable by mathematical modeling. Although functional stem cell properties were similar in vitro, accelerated reconstitution of heterogeneity provides a growth advantage in vivo, suggesting that tumorigenic potential is linked to intrinsic plasticity rather than CSC multipotency. The capacity of any given cancer cell to reconstitute tumor heterogeneity cautions against therapies targeting CSC-associated membrane epitopes. Instead inherent cancer cell plasticity emerges as a novel relevant target for treatment.


Subject(s)
Antineoplastic Agents, Alkylating/pharmacology , Brain Neoplasms/genetics , Cell Plasticity/drug effects , Glioblastoma/genetics , Tumor Microenvironment/drug effects , Animals , Antineoplastic Agents, Alkylating/therapeutic use , Biopsy , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Plasticity/genetics , Cohort Studies , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Gene Expression Profiling , Glioblastoma/drug therapy , Glioblastoma/pathology , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Temozolomide/pharmacology , Temozolomide/therapeutic use , Treatment Outcome , Tumor Microenvironment/genetics , Xenograft Model Antitumor Assays
3.
Expert Opin Investig Drugs ; 28(4): 311-322, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30879349

ABSTRACT

INTRODUCTION: RX-3117 is an oral, small molecule cytidine analog anticancer agent with an improved pharmacological profile relative to gemcitabine and other nucleoside analogs. The agent has excellent activity against various cancer cell lines and xenografts including gemcitabine-resistant variants and it has excellent oral bioavailability; it is not a substrate for the degradation enzyme cytidine deaminase. RX-3117 is being evaluated at a daily oral schedule of 700 mg (5 days/week for 3 weeks) which results in plasma levels in the micromolar range that have been shown to be cytotoxic to cancer cells. It has shown clinical activity in refractory bladder cancer and pancreatic cancer. Areas covered: The review provides an overview of the relevant market and describes the mechanism of action, main pharmacokinetic/pharmacodynamic features and clinical development of this investigational small molecule. Expert opinion: RX-3117 is selectively activated by uridine-cytidine kinase 2 (UCK2), which is expressed only in tumors and has a dual mechanism of action: DNA damage and inhibition of DNA methyltransferase 1 (DNMT1). Because of its tumor selective activation, novel mechanism of action, excellent oral bioavailability and candidate biomarkers for patient selection, RX-3117 has the potential to replace gemcitabine in the treatment of a spectrum of cancer types.


Subject(s)
Antimetabolites, Antineoplastic/therapeutic use , Cytidine/analogs & derivatives , Neoplasms/drug therapy , Administration, Oral , Antimetabolites, Antineoplastic/pharmacokinetics , Antimetabolites, Antineoplastic/pharmacology , Biological Availability , Cytidine/pharmacokinetics , Cytidine/pharmacology , Cytidine/therapeutic use , Deoxycytidine/analogs & derivatives , Deoxycytidine/therapeutic use , Humans , Neoplasms/pathology , Patient Selection , Gemcitabine
4.
Curr Med Chem ; 26(33): 6020-6032, 2019.
Article in English | MEDLINE | ID: mdl-30501594

ABSTRACT

BACKGROUND: Inherent or acquired chemo resistance in cancer patients has been a perpetual limitation in cancer treatment. Expanding knowledge on essential cellular processes opens a new window for therapeutic targeting. Ribosome biogenesis is a process that shows potential due to its fundamental role in cell development and contribution to tumorigenesis as a result of its upregulation. Inhibiting components of ribosome biogenesis has been explored and has shown interesting results. Yet, an important key component, methyltransferase Fibrillarin (FBL), which influences both the abundance and composition of ribosomes, has not been exploited thus far. METHODS: In this literature review, we describe relevant aspects of ribosome biogenesis in cancer to emphasize the potential of FBL as a therapeutic target, in order to lower the genotoxic effects of anti-cancer treatment. RESULTS: Remarkably, the amplification of the 19q13 cytogenetic band, including the gene coding for FBL, correlated to cell viability and resistance in pancreatic cells as well as to a trend toward a shorter survival in pancreatic cancer patients. Targeting ribosome biogenesis, more specifically compared to the secondary effects of chemotherapeutics such as 5-fluorouracil or oxaliplatin, has been achieved by compound CX-5461. The cell dependent activity of this Pol I inhibitor has been reported in ovarian cancer, melanoma and leukemia models with active or mutated p53 status, presenting a promising mechanism to evade p53 resistance. CONCLUSION: Targeting critical ribosome biogenesis components in order to decrease the genotoxic activity in cancer cell looks promising. Hence, we believe that targeting key protein rRNA methyltransferase FBL shows great potential, due to its pivotal role in ribosome biogenesis, its correlation to an improved survival rate at low expression in breast cancer patients and its association with p53.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Drug Resistance , Ribosomes/metabolism , Antimetabolites, Antineoplastic/chemistry , Antimetabolites, Antineoplastic/pharmacology , Antimetabolites, Antineoplastic/therapeutic use , Chromosomal Proteins, Non-Histone/chemistry , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , RNA Processing, Post-Transcriptional/drug effects , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , Ribosomes/genetics , Transcription, Genetic/drug effects , Virus Diseases/drug therapy , Virus Diseases/metabolism
5.
Article in English | MEDLINE | ID: mdl-30663502

ABSTRACT

DNA methylation plays an important role in carcinogenesis and aberrant methylation patterns have been found in many tumors. Methylation is regulated by DNA methyltransferases (DNMT), catalyzing DNA methylation. Therefore inhibition of DNMT is an interesting target for anticancer treatment. RX-3117 (fluorocyclopentenylcytosine) is a novel demethylating antimetabolite that is currently being studied in clinical trials in metastatic bladder and pancreatic cancers. The active nucleotide of RX-3117 is incorporated into DNA leading to downregulation of DNMT1, the maintenance DNA methylation enzyme. Since DNMT1 is a major target for the activity of RX-3117, DNMT1 may be a potential predictive biomarker. Therefore, DNMT1 protein and mRNA expression was investigated in 19 cancer cell lines, 26 human xenografts (hematological, lung, pancreatic, colon, bladder cancer) and 10 colorectal cancer patients. The DNMT1 mRNA expression showed large variation between cell lines (100-fold) and the 26 xenografts (1100-fold) investigated. The DNMT1 protein was overexpressed in colon tumours from patients compared to non-malignant mucosa from the same patients (P = 0.02). The DNA methylation in these patients was significantly higher in tumour tissues compared to normal mucosa (P = 0.001). DNMT1 expression in normal white blood cells also showed a large variation. In conclusion, the large variation in DNMT1 expression may serve as a potential biomarker for demethylating therapy such as with RX-3117.


Subject(s)
Antineoplastic Agents/pharmacology , Cytidine/analogs & derivatives , DNA (Cytosine-5-)-Methyltransferases/metabolism , 5-Methylcytosine/analysis , Aged , Aged, 80 and over , Animals , Cell Line, Tumor , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Cytidine/pharmacology , DNA Methylation/drug effects , Deoxyuridine/analysis , Female , Gene Expression Regulation, Neoplastic , Heterografts , Humans , Male , Mice, Nude , Middle Aged , RNA, Messenger/metabolism
6.
Nucleosides Nucleotides Nucleic Acids ; 35(10-12): 619-630, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27906620

ABSTRACT

RX-3117 (fluorocyclopentenyl-cytosine) is a novel cytidine analog currently being evaluated in a Phase Ib clinical trial in cancer patients with solid tumors. The radiosensitizing effect of RX-3117 was studied in A2780 ovarian cancer cells and non-small cell lung cancer cell lines and related to cell survival and the effect on cell cycle and cell cycle proteins. RX-3117 has a schedule-dependent radiosensitizing effect, but only at pre-incubation (dose modifying factors: 1.4-1.8), observed at pulse and fractionated irradiation. Radiosensitizion was also seen in a three-dimensional spheroid model. At the low radiosensitizing concentration, RX-3117 in combination with radiation led to an accumulation of cells in S-phase, which was accompanied with an increase of cell cycle proteins such as p-Chk2 and p-cdc25C. In addition, RX-3117 caused DNA damage and increased apoptosis. In conclusion, our in vitro experiments showed a radiosensitizing effect of RX-3117.


Subject(s)
Cytidine/analogs & derivatives , Radiation-Sensitizing Agents/pharmacology , Apoptosis/drug effects , Apoptosis/radiation effects , Cell Cycle Checkpoints , Cell Line, Tumor , Cytidine/pharmacology , DNA Damage , Drug Screening Assays, Antitumor , Female , Humans , Lung Neoplasms , Ovarian Neoplasms
7.
Nucleosides Nucleotides Nucleic Acids ; 35(10-12): 652-662, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27906622

ABSTRACT

Antimetabolites are incorporated into DNA and RNA, affecting their function. Liquid-chromatography-mass-spectrometry (LC-MS-MS) permits the sensitive, selective analysis of normal nucleosides. The method was adapted to measure the incorporation of deoxyuridine, gemcitabine (difluorodeoxycytidine), its metabolite difluorodeoxyuridine (dFdU), and the novel compound fluorocyclopentenylcytosine (RX3117). DNA was degraded to its deoxynucleotides for quantification by LC-MS-MS, gradient chromatography on a Phenomenex prodigy-3-ODS with positive ionization. The range of deoxyuridine DNA-mis-incorporation varied nine-fold in 27 cell lines (leukemia, colon, ovarian, lung cancer). At low-folate conditions a 2.1-fold increase in deoxyuridine was observed. Global methylation (given as % 5-methyl-deoxycytidine) was comparable between the cell lines (4.6-6.5%). Exposure of A2780 cells to 1 µM gemcitabine (4 hours) resulted in 3.6 pmol gemcitabine/µg DNA, but in AG6000 cells (deoxycytidine-kinase-deficient) no incorporation was found. However, when A2780, AG6000, or CCRF-CEM cells were exposed to 100 µM dFdU we found it as gemcitabine, 20.5, 19.6, and 0.51 pmol gemcitabine/µg DNA, respectively. Preincubation of CCRF-CEM cells with cyclopentenyl-cytosine (a CTP-synthetase inhibitor) increased dFdU incorporation four-fold. Apparently dFdU is activated independently of deoxycytidine-kinase and possibly converted in-situ to dFdCMP. RX3117 was incorporated into both DNA and RNA (0.0037 and 0.00515 pmol/µg, respectively). In summary, a sensitive method to quantify the incorporation of gemcitabine, deoxyuridine, and RX-3117 was developed, which revealed that dFdU was incorporated into DNA as the parent compound gemcitabine.


Subject(s)
Cytidine/analogs & derivatives , DNA Methylation , Deoxycytidine/analogs & derivatives , Floxuridine/metabolism , Cell Line, Tumor , Chromatography, Liquid , Cytidine/metabolism , DNA/metabolism , Deoxycytidine/metabolism , Humans , Limit of Detection , Mass Spectrometry , RNA/metabolism , Gemcitabine
8.
PLoS One ; 11(9): e0162901, 2016.
Article in English | MEDLINE | ID: mdl-27612203

ABSTRACT

Fluorocyclopentenylcytosine (RX-3117) is an orally available cytidine analog, currently in Phase I clinical trial. RX-3117 has promising antitumor activity in various human tumor xenografts including gemcitabine resistant tumors. RX-3117 is activated by uridine-cytidine kinase (UCK). Since UCK exists in two forms, UCK1 and UCK2, we investigated which form is responsible for RX-3117 phosphorylation. For that purpose we transfected A549 and SW1573 cell lines with UCK-siRNAs. Transfection of UCK1-siRNA efficiently downregulated UCK1-mRNA, but not UCK2-mRNA expression, and did not affect sensitivity to RX-3117. However, transfection of UCK2-siRNA completely downregulated UCK2-mRNA and protein and protected both A549 and SW1573 against RX-3117. UCK enzyme activity in two panels of tumor cell lines and xenograft cells correlated only with UCK2-mRNA expression (r = 0.803 and 0.915, respectively), but not with UCK1-mRNA. Moreover, accumulation of RX-3117 nucleotides correlated with UCK2 expression. In conclusion, RX-3117 is activated by UCK2 which may be used to select patients potentially sensitive to RX-3117.


Subject(s)
Cytidine/analogs & derivatives , Uridine Kinase/metabolism , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cytidine/chemistry , Cytidine/pharmacology , Down-Regulation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Phosphorylation/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Regression Analysis , Reproducibility of Results , Substrate Specificity/drug effects , Transfection , Uridine Kinase/genetics
9.
Invest New Drugs ; 31(6): 1444-57, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24048768

ABSTRACT

A novel cytidine analog fluorocyclopentenylcytosine (RX-3117; TV-1360) was characterized for its cytotoxicity in a 59-cell line panel and further characterized for cytotoxicity, metabolism and mechanism of action in 15 additional cancer cell lines, including gemcitabine-resistant variants. In both panels sensitivity varied 75-fold (IC50: 0.4- > 30 µM RX-3117). RX-3117 showed a different sensitivity profile compared to cyclopentenyl-cytosine (CPEC) and azacytidine, substrates for uridine-cytidine-kinase (UCK). Dipyridamole, an inhibitor of the equilibrative-nucleoside-transporter protected against RX-3117. Uridine and cytidine protected against RX-3117, but deoxycytidine (substrate for deoxycytidine-kinase [dCK]) not, although it protected against gemcitabine, demonstrating that RX-3117 is a substrate for UCK and not for dCK. UCK activity was abundant in all cell lines, including the gemcitabine-resistant variants. RX-3117 was a very poor substrate for cytidine deaminase (66,000-fold less than gemcitabine). RX-3117 was rapidly metabolised to its nucleotides predominantly the triphosphate, which was highest in the most sensitive cells (U937, A2780) and lowest in the least sensitive (CCRF-CEM). RX-3117 did not significantly affect cytidine and uridine nucleotide pools. Incorporation of RX-3117 into RNA and DNA was higher in sensitive A2780 and low in insensitive SW1573 cells. In sensitive U937 cells 1 µM RX-3117 resulted in 90% inhibition of RNA synthesis but 100 µM RX-3117 was required in A2780 and CCRF-CEM cells. RX-3117 at IC50 values did not affect the integrity of RNA. DNA synthesis was completely inhibited in sensitive U937 cells at 1 µM, but in other cells even higher concentrations only resulted in a partial inhibition. At IC50 values RX-3117 downregulated the expression of DNA methyltransferase. In conclusion, RX-3117 showed a completely different sensitivity profile compared to gemcitabine and CPEC, its uptake is transporter dependent and is activated by UCK. RX-3117 is incorporated into RNA and DNA, did not affect RNA integrity, depleted DNA methyltransferase and inhibited RNA and DNA synthesis. Nucleotide formation is related with sensitivity.


Subject(s)
Antineoplastic Agents/pharmacology , Cytidine/analogs & derivatives , Cell Line, Tumor , Cytidine/pharmacology , Cytidine Deaminase/metabolism , DNA/metabolism , DNA Modification Methylases/metabolism , Humans , RNA/metabolism , Uridine Kinase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...