Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
J Appl Microbiol ; 134(6)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37197901

ABSTRACT

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains the leading cause of mortality due to infectious diseases, only surpassed in 2020 by COVID-19. Despite the development in diagnostics, therapeutics, and evaluation of new vaccines for TB, this infectious disease remains uncontrollable due to the emergence of multidrug-resistant (MDR) and extremely drug-resistant (XDR) TB, among other factors. The development in transcriptomics (RNomics) has enabled the study of gene expression in TB. It is considered that non-coding RNAs (ncRNAs) from host [microRNAs (miRNAs)] and Mtb [small RNAs (sRNAs)] are important elements in TB pathogenesis, immune resistance, and susceptibility. Many studies have shown the importance of host miRNAs in regulating immune response against Mtb via in vitro and in vivo mice models. The bacterial sRNAs play a major role in survival, adaptation, and virulence. Here, we review the characterization and function of host and bacteria ncRNAs in TB and their potential use in clinical applications as diagnostic, prognostic, and therapeutic biomarkers.


Subject(s)
COVID-19 , MicroRNAs , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Animals , Mice , Antitubercular Agents/therapeutic use , COVID-19/genetics , Tuberculosis/genetics , Tuberculosis/drug therapy , Mycobacterium tuberculosis/genetics , MicroRNAs/therapeutic use , Tuberculosis, Multidrug-Resistant/microbiology
4.
Trop Med Infect Dis ; 8(2)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36828505

ABSTRACT

Globally, it is estimated that one-quarter of the world's population is latently infected with Mycobacterium tuberculosis (Mtb), also known as latent tuberculosis infection (LTBI). Recently, this condition has been referred to as tuberculosis infection (TBI), considering the dynamic spectrum of the infection, as 5-10% of the latently infected population will develop active TB (ATB). The chances of TBI development increase due to close contact with index TB patients. The emergence of multidrug-resistant TB (MDR-TB) and the risk of development of latent MDR-TB has further complicated the situation. Detection of TBI is challenging as the infected individual does not present symptoms. Currently, there is no gold standard for TBI diagnosis, and the only screening tests are tuberculin skin test (TST) and interferon gamma release assays (IGRAs). However, these tests have several limitations, including the inability to differentiate between ATB and TBI, false-positive results in BCG-vaccinated individuals (only for TST), false-negative results in children, elderly, and immunocompromised patients, and the inability to predict the progression to ATB, among others. Thus, new host markers and Mtb-specific antigens are being tested to develop new diagnostic methods. Besides screening, TBI therapy is a key intervention for TB control. However, the long-course treatment and associated side effects result in non-adherence to the treatment. Additionally, the latent MDR strains are not susceptible to the current TBI treatments, which add an additional challenge. This review discusses the current situation of TBI, as well as the challenges and efforts involved in its control.

5.
Data Brief ; 46: 108795, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36483477

ABSTRACT

These datasets present a list of small RNAs from three drug-susceptible Mycobacterium tuberculosis strains isolated from Sabah, Malaysia. Sputum samples were obtained from three tuberculosis patients belonging to different districts. The bacteria were detected using GeneXpert MTB/RIF, isolated and cultured in BACTECTM MGITTM 320, and tested for their drug susceptibility. Total RNAs were extracted, sequenced, and analyzed using bioinformatic tools to filter out small RNA present in the Mycobacterium tuberculosis strains. Small RNA sequencing generated total raw reads of 63,252,209, 63,636,812, and 61,148,224 and total trimmed reads (15-30 nucleotides) of 51,533,188, 53,520,197, and 51,363,772 for Mycobacterium tuberculosis strain SBH49, SBH149, and SBH372, respectively. The raw data were submitted to the Sequence Read Archive (SRA) database of the National Center for Biotechnology Information (NCBI) under the accession numbers of SRX16744291 (SBH49), SRX16744292 (SBH149), and SRX16744293 (SBH372). Small RNAs play important roles in cellular processes such as cell differentiation, cell signaling, development of resistance to antibiotics and immune response, and metabolism regulation. The small RNAs determined here could provide further insights into various cellular processes crucial for Mycobacterium tuberculosis survivability and a better understanding of their gene regulation which ultimately opens a new pathway for combating tuberculosis infection.

6.
Curr Issues Mol Biol ; 44(12): 5866-5878, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36547060

ABSTRACT

Carcinoscorpius rotundicauda (C. rotundicauda) is one of the four species of horseshoe crabs (HSCs). The HSC hemocytes store defense molecules that are released upon encountering invading pathogens. The HSCs rely on this innate immunity to continue its existence as a living fossil for more than 480 million years. To gain insight into the innate mechanisms involved, transcriptomic analysis was performed on isolated C. rotundicauda hemocytes challenged with lipopolysaccharides (LPS), the main components of the outer cell membrane of gram-negative bacteria. RNA-sequencing with Illumina HiSeq platform resulted in 232,628,086 and 245,448,176 raw reads corresponding to 190,326,253 and 201,180,020 high-quality mappable reads from control and LPS-stimulated hemocytes, respectively. Following LPS-stimulation, 79 genes were significantly upregulated and 265 genes were downregulated. The differentially expressed genes (DEGs) were related to multiple immune functional categories and pathways such as those of the cytoskeleton, Toll and Imd, apoptosis, MAP kinase (MAPK), inositol phosphate metabolism, phagosome, leucocyte endothelial migration, and gram-negative bacterial infection, among others. This study provides important information about the mechanisms of response to LPS, which is relevant for the understanding the HSCs' immune response.

7.
PLoS One ; 17(8): e0272799, 2022.
Article in English | MEDLINE | ID: mdl-35947629

ABSTRACT

Horseshoe crabs are one of the most studied invertebrates due to their remarkable innate immunity mechanism and biological processes. In this work, the proteins of the lipopolysaccharides (LPS)-stimulated and non-stimulated hemocytes of Malaysian Tachypleus gigas were profiled using LC-MS/MS. A total of 154 proteins were identified in both types of samples. Additionally, seventy-seven proteins were commonly found in both conditions, while 52 and 25 proteins were uniquely found in the LPS-stimulated and non-stimulated hemocytes, respectively. ATP-dependent energy-generating proteins such as actins and BLTX actin-related proteins were detected in both stimulated and non-stimulated T. gigas hemocytes, but more of such proteins were found in the former type. Proteins such as tachylectin-2, coagulogen, c-reactive proteins, histones, hemocyanin, and DNA polymerase, which play key roles in the organism's innate immunity, were differentially expressed in the hemocytes following LPS challenge. In conclusion, the proteins identified in the hemolymph of T. gigas are vital for the organism's molecular functions, biological processes, and activation of innate immunity.


Subject(s)
Biological Phenomena , Horseshoe Crabs , Animals , Chromatography, Liquid , Hemocytes/metabolism , Immunity, Innate , Lipopolysaccharides/metabolism , Proteomics , Tandem Mass Spectrometry
8.
Trop Med Infect Dis ; 7(8)2022 Jul 30.
Article in English | MEDLINE | ID: mdl-36006249

ABSTRACT

There is an increasing attention to the emerging health problem represented by the clinical and functional long-term consequences of SARS-CoV-2 infection, referred to as postacute COVID-19 syndrome. Clinical, radiographic, and autopsy findings have shown that a high rate of fibrosis and restriction of lung function are present in patients who have recovered from COVID-19. Patients with active TB, or those who have recovered from it, have fibrotic scarred lungs and, consequently, some degree of impaired respiratory function. Helminth infections trigger predominantly type 2 immune responses and the release of regulatory and fibrogenic cytokines, such as TGF-ß. Here, we analyze the possible consequences of the overlapping of pulmonary fibrosis secondary to COVID-19 and tuberculosis in the setting of sub-Saharan Africa, the region of the world with the highest prevalence of helminth infection.

10.
Fish Shellfish Immunol ; 117: 148-156, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34358702

ABSTRACT

Horseshoe crabs (HSCs) are living fossil species of marine arthropods with a long evolutionary history spanning approximately 500 million years. Their survival is helped by their innate immune system that comprises cellular and humoral immune components to protect them against invading pathogens. To help understand the genetic mechanisms involved, the present study utilised the Illumina HiSeq platform to perform transcriptomic analysis of hemocytes from the HSC, Tachypleus gigas, that were challenged with lipopolysaccharides (LPS). The high-throughput sequencing resulted in 352,077,208 and 386,749,136 raw reads corresponding to 282,490,910 and 305,709,830 high-quality mappable reads for the control and LPS-treated hemocyte samples, respectively. Based on the log-fold change of > 0.3 or < -0.3, 1338 genes were significantly upregulated and 215 genes were significantly downregulated following LPS stimulation. The differentially expressed genes (DEGs) were further identified to be associated with multiple pathways such as those related to immune defence, stress response, cytoskeleton function and signal transduction. This study provides insights into the underlying molecular and regulatory mechanisms in hemocytes exposed to LPS, which has relevance for the study of the immune response of HSCs to infection.


Subject(s)
Hemocytes/drug effects , Horseshoe Crabs/drug effects , Lipopolysaccharides/pharmacology , Transcriptome/drug effects , Animals , Gene Expression Profiling , Horseshoe Crabs/genetics
11.
Mitochondrial DNA B Resour ; 6(6): 1710-1714, 2021 May 23.
Article in English | MEDLINE | ID: mdl-34104748

ABSTRACT

This paper reports on the complete mitochondrial (mt) genome of a horseshoe crab, Tachypleus gigas (T. gigas), in Kuala Kemaman, Terengganu, Malaysia. Whole-genome sequencing of hemocyte DNA was performed with Illumina HiSeq system and the generated reads were de novo assembled with ABySS 2.1.5 and reassembled using mitoZ against Carcinoscorpius rotundicauda and Limulus polyphemus, resulting in a contig of 15 Kb. Phylogenetic analysis of the assembled mt genome suggests that the Tachypleus gigas is closely related to Tachypleus tridentatus than to Carcinoscorpius rotundicauda.

12.
Nanomedicine ; 34: 102374, 2021 06.
Article in English | MEDLINE | ID: mdl-33675981

ABSTRACT

Despite recent advances in diagnosis, tuberculosis (TB) remains one of the ten leading causes of death worldwide. Here, we engineered Mycobacterium tuberculosis (Mtb) proteins (ESAT6, CFP10, and MTB7.7) to self-assemble into core-shell nanobeads for enhanced TB diagnosis. Respective purified Mtb antigen-coated polyester beads were characterized and their functionality in TB diagnosis was tested in whole blood cytokine release assays. Sensitivity and specificity were studied in 11 pulmonary TB patients (PTB) and 26 healthy individuals composed of 14 Tuberculin Skin Test negative (TSTn) and 12 TST positive (TSTp). The production of 6 cytokines was determined (IFNγ, IP10, IL2, TNFα, CCL3, and CCL11). To differentiate PTB from healthy individuals (TSTp + TSTn), the best individual cytokines were IL2 and CCL11 (>80% sensitivity and specificity) and the best combination was IP10 + IL2 (>90% sensitivity and specificity). We describe an innovative approach using full-length antigens attached to biopolyester nanobeads enabling sensitive and specific detection of human TB.


Subject(s)
Antigens, Bacterial/immunology , Mycobacterium tuberculosis/immunology , Nanoparticles , Tuberculosis, Pulmonary/diagnosis , Cytokines/metabolism , Humans , Sensitivity and Specificity , Tuberculosis, Pulmonary/metabolism
14.
Pathogens ; 9(12)2020 Nov 29.
Article in English | MEDLINE | ID: mdl-33260418

ABSTRACT

Tuberculosis (TB) causes more than 1.5 million deaths each year, remaining a significant global health problem. Mycobacterium smegmatis (M. smegmatis) and Mycobacterium tuberculosis (M. tuberculosis) share features, which support the use of the former use in new generation TB vaccine development. In a previous study, the specific humoral and cellular immunogenicity of a recombinant M. smegmatis strain expressing epitopes from M. tuberculosis Ag85B protein (rMs064), was demonstrated in mice. In the current study, the immunomodulatory capacity of rMs064 was determined in a J774A.1 murine macrophage cell line. To determine the immunomodulatory effect of rMs064 in J774A.1 macrophages, the expression of inducible nitric oxide synthase (iNOS) and production of nitric oxide (NO) was evaluated. The expression of activation surface markers (MHC-II, CD40, CD80 and CD86) and the production of cytokines (IL-1ß, TNF-α, IL-12p70 and IL-6) was also determined in rMs064 infected J774A.1 macrophages. Our findings showed the ability of rMs064 to induce substantial increases in macrophage activation markers expression; MHC class II and CD40, compared with M. smegmatis transformed with the empty vector (rMs012) and uninfected cells. rMs064 induced significant increases in IL-12p70 compared to uninfected cells. The expression of iNOS and CD86, and the production of IL-1ß, and TNF-α were increased in rMs064 and rMs012, compared to uninfected cells. rMs064 demonstrated its immunomodulatory ability by stimulating the innate immune response, which supports its further evaluation as a TB vaccine candidate.

15.
Front Immunol ; 11: 566710, 2020.
Article in English | MEDLINE | ID: mdl-33162982

ABSTRACT

Lipids, glycolipids and lipopeptides derived from Mycobacterium tuberculosis (Mtb) are presented to T cells by monomorphic molecules known as CD1. This is the case of the Mtb-specific sulfoglycolipid Ac2SGL, which is presented by CD1b molecules and is recognized by T cells found in tuberculosis (TB) patients and in individuals with latent infections. Our group, using filamentous phage display technology, obtained two specific ligands against the CD1b-Ac2SGL complex: (i) a single chain T cell receptor (scTCR) from a human T cell clone recognizing the CD1b-AcSGL complex; and (ii) a light chain domain antibody (dAbκ11). Both ligands showed lower reactivity to a synthetic analog of Ac2SGL (SGL12), having a shorter acyl chain as compared to the natural antigen. Here we put forward the hypothesis that the CD1b endogenous spacer lipid (EnSpacer) plays an important role in the recognition of the CD1b-Ac2SGL complex by specific T cells. To support this hypothesis we combined: (a) molecular binding assays for both the scTCR and the dAbκ11 antibody domain against a small panel of synthetic Ac2SGL analogs having different acyl chains, (b) molecular modeling of the CD1b-Ac2SGL/EnSpacer complex, and (c) modeling of the interactions of this complex with the scTCR. Our results contribute to understand the mechanisms of lipid presentation by CD1b molecules and their interactions with T-cell receptors and other specific ligands, which may help to develop specific tools targeting Mtb infected cells for therapeutic and diagnostic applications.


Subject(s)
Antigens, Bacterial/immunology , Antigens, CD1/immunology , Models, Molecular , Mycobacterium tuberculosis/immunology , Receptors, Antigen, T-Cell/immunology , Antigens, CD1/genetics , Humans , Recombinant Proteins/immunology
17.
Tuberculosis (Edinb) ; 125: 102003, 2020 12.
Article in English | MEDLINE | ID: mdl-33099253

ABSTRACT

Tuberculosis (TB) is the deadliest of infectious diseases. TB diagnosis, based on sputum microscopy, culture, and nucleic acid amplification tests (NAATs) to identify its main causative agent, Mycobacterium tuberculosis (MTB), remains challenging. The current available NAATs, endorsed by World Health Organization (WHO), can differentiate MTB from some MTB complex (MTBC) members. Using bioinformatics, we identified a single nucleotide polymorphism (SNP) in lprM (Rv1970) gene that differentiate MTB from other MTBC members. A forward mismatch amplification mutation assay (MAMA) primer was designed for the targeted mutation and was used in a semi-nested melt-MAMA qPCR (lprM-MAMA). Using the optimized protocol, lprM-MAMA was positive with all MTB reference and clinical strains, and negative with other MTBC members, non-tuberculous mycobacteria (NTM) and other non-mycobacterial (NM) reference strains. The limit of detection (LOD) of lprM-MAMA was 76.29 fg. Xpert® MTB/RIF (Xpert)-positive sputum samples were also positive by lprM-MAMA, except for samples classified as having "very low" bacterial load by Xpert. Xpert-negative sputum samples were also negative by lprM-MAMA. In conclusion, lprM-MAMA demonstrated to be a useful tool for specific MTB diagnosis. Further evaluation with higher number of reference strains, including NTM and NM; and sputum samples are required to determine its potential for clinical application.


Subject(s)
DNA, Bacterial/genetics , Genetic Markers/genetics , Mutation , Mycobacterium tuberculosis/genetics , Nucleic Acid Amplification Techniques/methods , Real-Time Polymerase Chain Reaction/methods , Tuberculosis/diagnosis , DNA, Bacterial/analysis , Humans , Mycobacterium tuberculosis/isolation & purification , Tuberculosis/microbiology
18.
Int J Mycobacteriol ; 9(3): 261-267, 2020.
Article in English | MEDLINE | ID: mdl-32862158

ABSTRACT

Background: Tuberculosis (TB) is the leading cause of mortality due to infectious diseases. The development of new generation vaccines against TB is of paramount importance for the control of the disease. In previous studies, liposomes obtained from lipids of Mycobacterium smegmatis (LMs) demonstrated their immunogenicity and protective capacity against Mycobacterium tuberculosis in mice. To characterize the immunomodulatory capacity of this experimental vaccine candidate, in the current study, the stimulatory capacity of LMs was determined on bone marrow-derived dendritic cells (BMDCs) from mice. Methods: LMs were obtained and incubated with mature BMDCs. The internalization of LMs by BMDCs was studied by confocal microscopy, and the LMs immune-stimulatory capacity was determined by the expression of surface molecules (CD86 and MHCII) and the cytokine production (interleukin [IL]-12, interferon-Υ, tumor necrosis factor-α, and IL-10) 24 h after exposure to LMs. Results: The interaction of LMs with BMDCs and its internalization was demonstrated as well as the immune activation of BMDCs, characterized by the increased expression of CD86 and the production of IL-12. The LMs internalization and immune activation of BMDCs were blocked in the presence of cytochalasin, filipin III and chlorpromazine, which demonstrated that internalization of LMs by BMDCs is a key process for the LMs induced immune activation of BMDCs. Conclusions: The results obtained support the further evaluation of LMs as a mycobacterial vaccine, adjuvant, and in immunotherapy.


Subject(s)
Dendritic Cells/drug effects , Dendritic Cells/immunology , Liposomes/pharmacology , Mycobacterium smegmatis/chemistry , Animals , Bone Marrow Cells/immunology , Cytokines/immunology , Lipids/immunology , Mice , Mice, Inbred C57BL
19.
Tuberculosis (Edinb) ; 124: 101965, 2020 09.
Article in English | MEDLINE | ID: mdl-32692651

ABSTRACT

The purpose of this study was to investigate the composition of throat microbiota in pulmonary tuberculosis patients (PTB) in comparison to healthy tuberculin skin test positive (TSTp) and negative (TSTn) individuals. Throat swabs samples were collected, and the microbiota was characterized. Richer operational taxonomic units (OTUs) were present in PTB group, compared to TSTp and TSTn. Regarding alpha diversity analysis there was a higher community diversity in TSTn compared to TSTp. Beta diversity analysis showed different species composition in TSTp compared to TSTn and PTB. There was higher presence of Firmicutes in PTB and TSTn compared to TSTp group at phylum level. At the genus level, Leuconostoc and Enterococcus were higher in TSTn compared to TSTp and Pediococcus, Chryseobacterium, Bifidobacterium, Butyrivibrio, and Bulleidia were higher in PTB compared to TSTn. Streptococcus was higher in TSTn compared to PTB and Lactobacillus in PTB compared to TSTp. At species level, Streptococcus sobrinus and Bulleidia moorei were higher in PTB compared to TSTn individuals, while Lactobacillus salivarius was higher in PTB compared to TSTp. The differences in the microbiome composition could influence the resistance/susceptibility to Mtb infection.


Subject(s)
Bacteria/isolation & purification , Microbiota , Pharynx/microbiology , Tuberculin Test , Tuberculosis, Pulmonary/microbiology , Bacteria/classification , Bacteria/genetics , Case-Control Studies , Humans , Malaysia , Predictive Value of Tests , Ribotyping , Tuberculosis, Pulmonary/diagnosis
20.
Int J Biol Macromol ; 155: 305-314, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32240734

ABSTRACT

T cell receptor (TCR)-like antibodies, obtained with the use of phage display technology, sandwich the best of the both arms of the adaptive immune system. In this study, in vitro selections against the latency associated Mycobacterium tuberculosis (Mtb) heat shock protein 16 kDa antigen (16 kDa) presented by HLA-A*011 and HLA-A*24 were carried out with the use of a human domain phage antibody library. TCR-like domain antibodies (A11Ab and A24Ab) were successfully generated recognizing 16 kDa epitopes presented by HLA-A*011 and HLA-A*24 molecules respectively. Both antibodies were found to be functional in soluble form and exhibited strong binding capacity against its targets. The results obtained support the future evaluation of these ligands for the development of diagnostic and therapeutic tools for tuberculosis infection.


Subject(s)
Antibodies, Bacterial/immunology , Antigens, Bacterial/immunology , HLA-A Antigens/immunology , Heat-Shock Proteins/immunology , Mycobacterium tuberculosis/immunology , Receptors, Antigen, T-Cell/immunology , Tuberculosis/diagnosis , Cell Surface Display Techniques , Humans , Protein Domains , Tuberculosis/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...