Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropharmacology ; 225: 109381, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36539012

ABSTRACT

Alterations of the brain-gut-microbiome system (BGM) have been implicated in the pathophysiology of irritable bowel syndrome (IBS), yet bowel habit-specific alterations have not been elucidated. In this cross-sectional study, we apply a systems biology approach to characterize BGM patterns related to predominant bowel habit. Fecal samples and resting state fMRI were obtained from 102 premenopausal women (36 constipation-predominant IBS (IBS-C), 27 diarrhea-predominant IBS (IBS-D), 39 healthy controls (HCs)). Data integration analysis using latent components (DIABLO) was used to integrate data from the phenome, microbiome, metabolome, and resting-state connectome to predict HCs vs IBS-C vs IBS-D. Bloating and visceral sensitivity, distinguishing IBS from HC, were negatively associated with beneficial microbes and connectivity involving the orbitofrontal cortex. This suggests that gut interactions may generate aberrant central autonomic and descending pain pathways in IBS. The connection between IBS symptom duration, key microbes, and caudate connectivity may provide mechanistic insight to the chronicity of pain in IBS. Compared to IBS-C and HCs, IBS-D had higher levels of many key metabolites including tryptophan and phenylalanine, and increased connectivity between the sensorimotor and default mode networks; thus, suggestingan influence on diarrhea, self-related thoughts, and pain perception in IBS-D ('bottom-up' mechanism). IBS-C's microbiome and metabolome resembled HCs, but IBS-C had increased connectivity in the default mode and salience networks compared to IBS-D, which may indicate importance of visceral signals, suggesting a more 'top-down' BGM pathophysiology. These BGM characteristics highlight possible mechanistic differences for variations in the IBS bowel habit phenome. This article is part of the Special Issue on 'Microbiome & the Brain: Mechanisms & Maladies'.


Subject(s)
Gastrointestinal Microbiome , Irritable Bowel Syndrome , Humans , Female , Irritable Bowel Syndrome/complications , Irritable Bowel Syndrome/metabolism , Cross-Sectional Studies , Multiomics , Brain/metabolism , Diarrhea/complications , Pain
SELECTION OF CITATIONS
SEARCH DETAIL
...