Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 13945, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35978091

ABSTRACT

Low soil available phosphorus (P) severely limits crop production in sub-Saharan Africa. The present study evaluated phosphate rock-enriched composts as locally available low-cost fertilizers for sorghum production. The treatments consisted of sorghum straw, compost (COMP), phosphate rock (BPR), BPR-enriched compost (P-COMP), BPR-rhizosphere soil-enriched compost (P-COMP-SOIL), nitrogen-phosphorus-potassium treatment (NPK, 60-39-25), and control (NK, 60-25). Sorghum straw and compost were applied at 1.34 tons ha-1. N, P, and K in all treatments, excluding the control, were adjusted to 60, 39, and 25 kg ha-1, with urea, BPR, and KCl, respectively. Sorghum vr. kapelga was cultivated and soil samples were collected at the S5, S8, and S9 growth stages. P-COMP-SOIL and NPK yielded better sorghum yields than the other treatments. The rhizosphere soil of P-COMP-SOIL had high abundance of soil bacteria and AMF, and genes involved in P solubilization, such as: acid phosphatase (aphA), phosphonatase (phnX), glucose dehydrogenase (gcd), pyrroloquinoline quinone (pqqE), phosphate-specific transporter (pstS). The superior performance of the P-COMP-SOIL was associated with its higher available P content and microbial abundance. Multivariate analysis also revealed vital contributions of N, carbon, and exchangeable cations to sorghum growth. Soils could be amended with phosphate rock-rhizosphere soil-enriched composts, as an alternative to chemical fertilizers.


Subject(s)
Composting , Sorghum , Burkina Faso , Edible Grain/chemistry , Fertilizers/analysis , Phosphates/analysis , Phosphorus , Soil
2.
Microbiol Res ; 197: 22-28, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28219522

ABSTRACT

Bacterial communities play an important role in nutrient cycles and plant development. Their distribution and activity may depend on location and environmental heterogeneity. This study characterized soil bacterial communities in cassava fields of Eastern (Andom) and Southern (Bityili) Cameroon using molecular tools. In both sites, two improved varieties (TMS-96/1414; TMS-92/0326) and a local variety (Local) were grown in a randomized block design. Composite bulk soils were collected at 10months after planting from cassava plots. The 16S rDNA region was amplified, MiSeq was performed and sequence data analyzed. The same 17 bacterial phyla were present in both Andom and Bityili, while Chlorobi and Deinococcus-Thermus were only specific to Andom. The phyla Proteobacteria, Planctomycetes, Actinobacteria and Acidobacteria were dominant. Although both sites shared similar phyla, the principal coordinate analysis revealed significant variations in their composition, suggesting that the functions of the bacteria in nutrients cycling are likely to differ between Andom and Bityili. Cassava yields were generally higher in Andom which also displayed a higher diversity of bacterial communities. This study provides useful information on the composition of bacterial communities in cassava fields in two agro-ecologies of Cameroon. It constitutes to our knowledge the first report describing soil bacterial communities in association with cassava growth in the country, using molecular tools.


Subject(s)
Bacteria/classification , Manihot/microbiology , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Base Sequence , Biodiversity , Cameroon , DNA, Bacterial/isolation & purification , Ecology , Manihot/growth & development , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Soil/chemistry , Soil Microbiology
3.
Scientifica (Cairo) ; 2016: 7026859, 2016.
Article in English | MEDLINE | ID: mdl-26904363

ABSTRACT

This field experiment was established in Eastern Cameroon to examine the effect of selected rhizobial inoculation on N2-fixation and growth of Pueraria phaseoloides. Treatments consisted of noninoculated and Bradyrhizobium yuanmingense S3-4-inoculated Pueraria with three replications each. Ipomoea batatas as a non-N2-fixing reference was interspersed in each Pueraria plot. All the twelve plots received 2 gN/m(2) of (15)N ammonium sulfate 10% atom excess. At harvest, dry matter yields and the nitrogen derived from atmospheric N2-fixation (%Ndfa) of inoculated Pueraria were significantly (P < 0.05) higher (81% and 10.83%, resp.) than those of noninoculated Pueraria. The inoculation enhanced nodule dry weight 2.44-fold. Consequently, the harvested N significantly (P < 0.05) increased by 83% in inoculated Pueraria, resulting from the increase in N2-fixation and soil N uptake. A loss of 55 to 60% of the N fertilizer was reported, and 36 to 40% of it was immobilized in soil. Here, we demonstrated that both N2-fixing potential of P. phaseoloides and soil N uptake are improved through field inoculations using efficient bradyrhizobial species. In practice, the inoculation contributes to maximize N input in soils by the cover crop's biomass and represent a good strategy to improve soil fertility for subsequent cultivation.

4.
Syst Appl Microbiol ; 34(4): 285-92, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21498019

ABSTRACT

Cowpea [Vigna unguiculata (L.) Walp.] is an important legume crop and yet its rhizobia have not been well characterized in many areas. In the present study, sequence analysis of the bacterial 16S-23S rRNA internal transcribed spacer (ITS) region was performed to characterize genetically 76 indigenous cowpea rhizobia from five different geographic regions (Okinawa, Miyazaki, Kyoto, Fukushima and Hokkaido) of Japan. The sequence analysis clustered all isolates in the genus Bradyrhizobium. They were conspecific with B. japonicum, B. yuanmingense, B. elkanii and Bradyrhizobium sp., although none of them grouped with B. liaoningense, B. canariense, B. betae or B. iriomotense. B. yuanmingense was only isolated from the southern region (Okinawa) where it achieved the highest frequency of 69%. B. japonicum was predominant at Miyazaki, Fukushima and Hokkaido with more than 60% of the isolates. B. elkanii was mainly recorded in the southern (Okinawa: 31%, Miyazaki: 33%) and middle (Kyoto: 33%) regions. This species was present at a very low frequency in Fukushima and absent in Hokkaido in the northern area. Bradyrhizobium sp. like-strains were absent in the southern part (Okinawa, Miyazaki) but were concentrated either in the middle regions with 67% of Kyoto isolates and 28% of Fukushima isolates, and in the northern region with 40% of the Hokkaido isolates. This study revealed a geographical distribution of cowpea bradyrhizobia which seemed to be related to the differences in the environmental characteristics (soil type and soil pH, temperature, climate, moisture) of the different regions in Japan.


Subject(s)
Bradyrhizobium/classification , Bradyrhizobium/genetics , Fabaceae/microbiology , Soil Microbiology , Bradyrhizobium/isolation & purification , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Japan , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...