Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Pharm ; 20(7): 3570-3577, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37307328

ABSTRACT

Selective delivery of chemotherapy to the tumor site while sparing healthy cells and tissues is an attractive approach for cancer treatment. Carriers such as peptides can facilitate selective tumor targeting and payload delivery. Peptides with specific affinity for the overexpressed cell-surface receptors in cancer cells are conjugated to chemotherapy to afford peptide-drug conjugates (PDCs) that show selective uptake by cancer cells. Using a 10-mer linear peptide (WxEAAYQrFL) called 18-4 that targets and binds breast cancer cells, we designed a peptide 18-4-doxorubicin (Dox) conjugate with high specific toxicity toward triple-negative breast cancer (TNBC) MDA-MB-231 cells and 30-fold lower toxicity to normal breast MCF10A epithelial cells. Here, we elucidate the in vivo activity of this potent and tumor-selective peptide 18-4-Dox conjugate in mice bearing orthotopic MDA-MB-231 tumors. Mice treated with four weekly injections of the conjugate showed significantly lower tumor volumes compared to mice treated with free Dox at an equivalent Dox dose. Immunohistochemical (IHC) analysis of mice tissues revealed that treatment with a low dose of PDC (2.5 mg/kg of Dox equiv) reduced the expression of proliferation markers (PCNA and Ki-67) and increased apoptosis (evidenced by increased caspase-3 expression). At the same dose of free Dox (2.5 mg/kg), the expression of these markers was similar to that of saline treatment. Accordingly, significantly more Dox accumulated in tumors of conjugate-treated mice (7-fold) compared to the Dox-treated mice, while lower levels of Dox were observed in the liver, heart, and lungs of peptide-Dox conjugate-treated mice (up to 3-fold less) than Dox-treated mice. The IHC analysis of keratin 1 (K1), the receptor for peptide 18-4, revealed K1 upregulation in tumors and low levels in normal mammary fat pad and liver tissues from mice, suggesting preferential uptake of PDCs by TNBC to be K1 receptor-mediated. Taken together, our data support the use of a PDC approach to deliver chemotherapy selectively to the TNBC to inhibit tumor growth.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Female , Triple Negative Breast Neoplasms/drug therapy , Keratin-1 , Drug Delivery Systems , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Peptides/therapeutic use , Cell Line, Tumor , Breast Neoplasms/drug therapy
2.
Front Oncol ; 11: 772920, 2021.
Article in English | MEDLINE | ID: mdl-35004293

ABSTRACT

Inhibition of the DNA repair enzyme polynucleotide kinase/phosphatase (PNKP) increases the sensitivity of cancer cells to DNA damage by ionizing radiation (IR). We have developed a novel inhibitor of PNKP, i.e., A83B4C63, as a potential radio-sensitizer for the treatment of solid tumors. Systemic delivery of A83B4C63, however, may sensitize both cancer and normal cells to DNA damaging therapeutics. Preferential delivery of A83B4C63 to solid tumors by nanoparticles (NP) was proposed to reduce potential side effects of this PNKP inhibitor to normal tissue, particularly when combined with DNA damaging therapies. Here, we investigated the radio-sensitizing activity of A83B4C63 encapsulated in NPs (NP/A83) based on methoxy poly(ethylene oxide)-b-poly(α-benzyl carboxylate-ε-caprolactone) (mPEO-b-PBCL) or solubilized with the aid of Cremophor EL: Ethanol (CE/A83) in human HCT116 colorectal cancer (CRC) models. Levels of γ-H2AX were measured and the biodistribution of CE/A83 and NP/A83 administered intravenously was determined in subcutaneous HCT116 CRC xenografts. The radio-sensitization effect of A83B4C63 was measured following fractionated tumor irradiation using an image-guided Small Animal Radiation Research Platform (SARRP), with 24 h pre-administration of CE/A83 and NP/A83 to Luc+/HCT116 bearing mice. Therapeutic effects were analyzed by monitoring tumor growth and functional imaging using Positron Emission Tomography (PET) and [18F]-fluoro-3'-deoxy-3'-L:-fluorothymidine ([18F]FLT) as a radiotracer for cell proliferation. The results showed an increased persistence of DNA damage in cells treated with a combination of CE/A83 or NP/A83 and IR compared to those only exposed to IR. Significantly higher tumor growth delay in mice treated with a combination of IR and NP/A83 than those treated with IR plus CE/A83 was observed. [18F]FLT PET displayed significant functional changes for tumor proliferation for the drug-loaded NP. This observation was attributed to the higher A83B4C63 levels in the tumors for NP/A83-treated mice compared to those treated with CE/A83. Overall, the results demonstrated a potential for A83B4C63-loaded NP as a novel radio-sensitizer for the treatment of CRC.

3.
Drug Dev Ind Pharm ; 46(3): 484-497, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32077331

ABSTRACT

The objective of the present study was the fabrication of a wound dressing membrane based on RGD modified polybutylene adipate-co-terephthalate (PBAT)/gelatin nanofibrous structures loaded with doxycycline (DOX). This type of nanofiber for wound healing has not been reported so far and is quite novel. PBAT and gelatin nanofibers were separately electrospun using double needles electrospinning setup. Electrospinning variables were optimized to obtain bead-free thin nanofibers. The amount of drug loaded and release were measured in different concentrations of DOX and PBAT. MMPs inhibition was studied by polyacrylamide gel-zymography. Then, surface of the nanofibers was modified with RGD peptide, and their antimicrobial effect was investigated on Staphylococcus aureus and Pseudomonas aeruginosa. Effect of developed nanofibrous membranes on L929 fibroblast cells proliferation, adhesion and closure of excised wounds in rat were also studied. PBAT/gelatin nanofibrous structures with average fiber diameter of 75-529 nm were developed successfully. Drug release study revealed that about 65% of DOX was released from the optimized formulation (P17D1.6) after 20 h. The developed DOX loaded membrane inhibited the MMPs activity and showed no cytotoxicity. RGD surface-modified PBAT/gelatin nanofibers significantly improved the wound closure and histopathological results (re-epithelialization, collagen deposition, and angiogenesis) in rats compared to the control groups. Overall, RGD immobilized PBAT/gelatin nanofibrous membrane may have a potential application for wound healing.


Subject(s)
Doxycycline/administration & dosage , Matrix Metalloproteinase Inhibitors/administration & dosage , Nanofibers , Wound Healing/drug effects , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Bandages , Cell Line , Doxycycline/pharmacology , Drug Liberation , Fibroblasts/drug effects , Fibroblasts/metabolism , Gelatin/chemistry , Male , Matrix Metalloproteinase Inhibitors/pharmacology , Mice , Oligopeptides/chemistry , Polyesters/chemistry , Pseudomonas aeruginosa/drug effects , Rats , Rats, Wistar , Staphylococcus aureus/drug effects
4.
Anticancer Agents Med Chem ; 19(11): 1405-1417, 2019.
Article in English | MEDLINE | ID: mdl-30987576

ABSTRACT

BACKGROUND: Mitomycin C (MMC) is an anti-cancer drug used for the treatment of breast cancer with limited therapeutic index, extreme gastric adverse effects and bone marrow suppression. The purpose of the present study was the preparation of a dual-targeted delivery system of MMC for targeting CD44 and LHRH overexpressed receptors of breast cancer. METHODS: MMC loaded LHRH targeted chonderosome was prepared by precipitation method and was characterized for their physicochemical properties. Cell cycle arrest and cytotoxicity tests were studied on cell lines of MCF-7, MDA-MB231 and 4T1 (as CD44 and LHRH positive cells) and BT-474 cell line (as CD44 negative receptor cells). The in vivo histopathology and antitumor activity of MMC-loaded chonderosomes were compared with free MMC in 4T1 cells inducing breast cancer in Balb-c mice. RESULTS: MMC loaded LHRH targeted chonderosomes caused 3.3 and 5.5 fold more cytotoxicity on MCF-7 and 4T1 cells than free MMC at concentrations of 100µM and 10µM, respectively. However, on BT-474 cells the difference was insignificant. The cell cycle test showed no change for MMC mechanism of action when it was loaded in chonderosomes compared to free MMC. The in vivo antitumor studies showed that MMC loaded LHRH targeted chonderosomes were 6.5 fold more effective in the reduction of tumor volume than free MMC with the most severe necrosis compared to non-targeted chonderosomes in pathological studies on harvested tumors. CONCLUSION: The developed MMC loaded LHRH targeted chonderosomes were more effective in tumor growth suppression and may be promising for targeted delivery of MMC in breast cancer.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Breast Neoplasms/drug therapy , Gonadotropin-Releasing Hormone/metabolism , Hyaluronan Receptors/metabolism , Mitomycin/pharmacology , Animals , Antibiotics, Antineoplastic/adverse effects , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Cycle Checkpoints/drug effects , Cell Proliferation/drug effects , Drug Carriers/chemistry , Drug Delivery Systems , Drug Liberation , Female , Gonadotropin-Releasing Hormone/chemistry , Humans , Mice , Mice, Inbred BALB C , Mitomycin/adverse effects , Particle Size , Proteoglycans/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...