Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
JCI Insight ; 7(13)2022 07 08.
Article in English | MEDLINE | ID: mdl-35801586

ABSTRACT

IL-1 receptor-activated kinase 1 (IRAK1) is involved in signal transduction downstream of many TLRs and the IL-1R. Its potential as a drug target for chronic inflammatory diseases is underappreciated. To study its functional role in joint inflammation, we generated a mouse model expressing a functionally inactive IRAK1 (IRAK1 kinase deficient, IRAK1KD), which also displayed reduced IRAK1 protein expression and cell type-specific deficiencies of TLR signaling. The serum transfer model of arthritis revealed a potentially novel role of IRAK1 for disease development and neutrophil chemoattraction exclusively via its activity in nonhematopoietic cells. Consistently, IRAK1KD synovial fibroblasts showed reduced secretion of neutrophil chemoattractant chemokines following stimulation with IL-1ß or human synovial fluids from patients with rheumatoid arthritis (RA) and gout. Together with patients with RA showing prominent IRAK1 expression in fibroblasts of the synovial lining, these data suggest that targeting IRAK1 may be therapeutically beneficial. As pharmacological inhibition of IRAK1 kinase activity had only mild effects on synovial fibroblasts from mice and patients with RA, targeted degradation of IRAK1 may be the preferred pharmacologic modality. Collectively, these data position IRAK1 as a central regulator of the IL-1ß-dependent local inflammatory milieu of the joints and a potential therapeutic target for inflammatory arthritis.


Subject(s)
Arthritis, Rheumatoid , Interleukin-1 Receptor-Associated Kinases , Neutrophils , Synovial Membrane , Animals , Arthritis, Rheumatoid/metabolism , Cells, Cultured , Disease Models, Animal , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-8/metabolism , Mice , Neutrophils/metabolism , Synovial Membrane/metabolism
2.
Cell Rep ; 37(6): 109977, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34758308

ABSTRACT

Tumor necrosis factor (TNF) is a key driver of several inflammatory diseases, such as rheumatoid arthritis, inflammatory bowel disease, and psoriasis, in which affected tissues show an interferon-stimulated gene signature. Here, we demonstrate that TNF triggers a type-I interferon response that is dependent on the cyclic guanosine monophosphate-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. We show that TNF inhibits PINK1-mediated mitophagy and leads to altered mitochondrial function and to an increase in cytosolic mtDNA levels. Using cGAS-chromatin immunoprecipitation (ChIP), we demonstrate that cytosolic mtDNA binds to cGAS after TNF treatment. Furthermore, TNF induces a cGAS-STING-dependent transcriptional response that mimics that of macrophages from rheumatoid arthritis patients. Finally, in an inflammatory arthritis mouse model, cGAS deficiency blocked interferon responses and reduced inflammatory cell infiltration and joint swelling. These findings elucidate a molecular mechanism linking TNF to type-I interferon signaling and suggest a potential benefit for therapeutic targeting of cGAS/STING in TNF-driven diseases.


Subject(s)
Arthritis, Experimental/immunology , DNA, Mitochondrial/metabolism , Immunity, Innate , Inflammation/immunology , Interferon Type I/pharmacology , Membrane Proteins/metabolism , Nucleotidyltransferases/physiology , Tumor Necrosis Factor-alpha/pharmacology , Animals , Arthritis, Experimental/drug therapy , Arthritis, Experimental/genetics , Arthritis, Experimental/metabolism , DNA, Mitochondrial/drug effects , Female , Inflammation/drug therapy , Inflammation/genetics , Inflammation/metabolism , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism , Macrophages/immunology , Male , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitophagy
3.
Arthritis Rheumatol ; 72(6): 919-930, 2020 06.
Article in English | MEDLINE | ID: mdl-31943941

ABSTRACT

OBJECTIVE: Fcγ receptors (FcγR) play important roles in both protective and pathogenic immune responses. The assembly of the CBM signalosome encompassing caspase recruitment domain-containing protein 9, B cell CLL/lymphoma 10, and mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT-1) is required for optimal FcγR-induced canonical NF-κB activation and proinflammatory cytokine release. This study was undertaken to clarify the relevance of MALT-1 protease activity in FcγR-driven events and evaluate the therapeutic potential of selective MALT-1 protease inhibitors in FcγR-mediated diseases. METHODS: Using genetic and pharmacologic disruption of MALT-1 scaffolding and enzymatic activity, we assessed the relevance of MALT-1 function in murine and human primary myeloid cells upon stimulation with immune complexes (ICs) and in murine models of autoantibody-driven arthritis and immune thrombocytopenic purpura (ITP). RESULTS: MALT-1 protease function is essential for optimal FcγR-induced production of proinflammatory cytokines by various murine and human myeloid cells stimulated with ICs. In contrast, MALT-1 protease inhibition did not affect the Syk-dependent, FcγR-mediated production of reactive oxygen species or leukotriene B4 . Notably, pharmacologic MALT-1 protease inhibition in vivo reduced joint inflammation in the murine K/BxN serum-induced arthritis model (mean area under the curve for paw swelling of 45.42% versus 100% in control mice; P = 0.0007) but did not affect platelet depletion in a passive model of ITP. CONCLUSION: Our findings indicate a specific contribution of MALT-1 protease activity to FcγR-mediated events and suggest that MALT-1 protease inhibitors have therapeutic potential in a subset of FcγR-driven inflammatory disorders.


Subject(s)
Arthritis, Experimental/immunology , Arthritis, Rheumatoid/immunology , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/immunology , Receptors, IgG/immunology , Animals , Antigen-Antibody Complex/metabolism , Blood Platelets/metabolism , Cytokines/immunology , Disease Models, Animal , Humans , Mice , Myeloid Cells/metabolism
4.
Proc Natl Acad Sci U S A ; 116(16): 7926-7931, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30926668

ABSTRACT

Dysregulation of the alternative complement pathway (AP) predisposes individuals to a number of diseases including paroxysmal nocturnal hemoglobinuria, atypical hemolytic uremic syndrome, and C3 glomerulopathy. Moreover, glomerular Ig deposits can lead to complement-driven nephropathies. Here we describe the discovery of a highly potent, reversible, and selective small-molecule inhibitor of factor B, a serine protease that drives the central amplification loop of the AP. Oral administration of the inhibitor prevents KRN-induced arthritis in mice and is effective upon prophylactic and therapeutic dosing in an experimental model of membranous nephropathy in rats. In addition, inhibition of factor B prevents complement activation in sera from C3 glomerulopathy patients and the hemolysis of human PNH erythrocytes. These data demonstrate the potential therapeutic value of using a factor B inhibitor for systemic treatment of complement-mediated diseases and provide a basis for its clinical development.


Subject(s)
Complement Factor B/antagonists & inhibitors , Complement Pathway, Alternative/drug effects , Drug Discovery/methods , Immunologic Factors/pharmacology , Animals , Disease Models, Animal , Glomerulonephritis, Membranous/physiopathology , Humans , Male , Mice , Mice, Inbred C57BL , Rats, Sprague-Dawley
5.
J Exp Med ; 213(9): 1655-62, 2016 08 22.
Article in English | MEDLINE | ID: mdl-27481132

ABSTRACT

When SUCNR1/GPR91-expressing macrophages are activated by inflammatory signals, they change their metabolism and accumulate succinate. In this study, we show that during this activation, macrophages release succinate into the extracellular milieu. They simultaneously up-regulate GPR91, which functions as an autocrine and paracrine sensor for extracellular succinate to enhance IL-1ß production. GPR91-deficient mice lack this metabolic sensor and show reduced macrophage activation and production of IL-1ß during antigen-induced arthritis. Succinate is abundant in synovial fluids from rheumatoid arthritis (RA) patients, and these fluids elicit IL-1ß release from macrophages in a GPR91-dependent manner. Together, we reveal a GPR91/succinate-dependent feed-forward loop of macrophage activation and propose GPR91 antagonists as novel therapeutic principles to treat RA.


Subject(s)
Arthritis, Rheumatoid/etiology , Macrophages/metabolism , Receptors, G-Protein-Coupled/physiology , Succinic Acid/metabolism , Animals , Arthritis, Rheumatoid/metabolism , Female , Humans , Interleukin-1beta/metabolism , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred C57BL , Receptors, G-Protein-Coupled/antagonists & inhibitors , U937 Cells
6.
Cancer Res ; 73(17): 5320-7, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23867476

ABSTRACT

The HER2 gene is amplified and overexpressed in approximately 20% of invasive breast cancers where it is associated with metastasis and poor prognosis. Here, we describe a constitutively active splice variant of HER2 (Delta-HER2) in human mammary epithelial cells that evokes aggressive breast cancer phenotypes. Delta-HER2 overexpression in mammary epithelial cells was sufficient to reduce apoptosis, increase proliferation, and induce expression of mesenchymal markers, features that were associated with greater invasive potential in three-dimensional cultures in vitro and more aggressive tumorigenicity and metastasis in vivo. In contrast, overexpression of wild-type HER2 was insufficient at evoking such effects. Unbiased protein-tyrosine phosphorylation profiling in Delta-HER2-expressing cells revealed increased phosphorylation of several signaling proteins not previously known to be controlled by the HER2 pathway. Furthermore, microarray expression analysis revealed activation of genes known to be highly expressed in ER-negative, high-grade, and metastatic primary breast tumors. Together, our results provide mechanistic insights into the activity of a highly pathogenic splice variant of HER2.


Subject(s)
Alternative Splicing/genetics , Breast Neoplasms/secondary , Cell Movement , Lung Neoplasms/secondary , Mammary Neoplasms, Animal/pathology , Phosphotyrosine/metabolism , Receptor, ErbB-2/genetics , Animals , Apoptosis , Biomarkers, Tumor/genetics , Breast/cytology , Breast/metabolism , Breast Neoplasms/genetics , Cell Culture Techniques , Cell Cycle , Cell Proliferation , Cell Transformation, Neoplastic , Cells, Cultured , Chromatography, Liquid , Epithelial-Mesenchymal Transition , Female , Gene Expression Profiling , Humans , Immunoenzyme Techniques , Lung Neoplasms/genetics , Mammary Glands, Human/cytology , Mammary Glands, Human/metabolism , Mammary Neoplasms, Animal/genetics , Mice , Mice, SCID , Oligonucleotide Array Sequence Analysis , Phosphorylation , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...