Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Pharmacol Ther ; 259: 108657, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38735487

ABSTRACT

Rosa roxburghii Tratt (RRT), known as chestnut rose, has been a subject of growing interest because of its diverse chemical composition and wide range of traditional uses. This comprehensive review aimed to thoroughly examine RRT, including its traditional applications, chemical diversity, and various bioactivities. The chemical profile of this plant is characterized by the presence of essential nutrients such as vitamin C (ascorbic acid), flavonoids, triterpenes, organic acids, tannins, phenolic compounds, polysaccharides, carotenoids, triterpenoids, volatile compounds, amino acids, and essential oils. These constituents contribute to the medicinal and nutritional value. Additionally, we explore the multifaceted bioactivities of RRT, including its potential as an anticancer agent, antioxidant, antiaging agent, antiatherogenic agent, hypoglycemic agent, immunoregulatory modulator, radioprotective agent, antimutagenic agent, digestive system regulator, anti-inflammatory agent, cardioprotective agent, and antibacterial agent, and its intriguing role in modulating the gut microbiota. Furthermore, we discuss the geographical distribution and genetic diversity of this plant species and shed light on its ecological significance. This comprehensive review provides a holistic understanding of RRT, bridges traditional knowledge with contemporary scientific research, and highlights its potential applications in medicine, nutrition, and pharmacology.

2.
Plant Dis ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587802

ABSTRACT

Dendrobium nobile is the largest species of the Orchidaceae family and produces dendrobine, a compound with medicinal properties (Sarsaiya et al., 2020a; Sarsaiya et al., 2024; Qian et al., 2024). The accumulation of dendrobine in D. nobile is regulated by various pathogenic fungi, which directly and indirectly influence dendrobine biosynthesis (Sarsaiya et al., 2019a; Sarsaiya et al., 2019b). In a field planted with D. nobile in Guizhou Province, China, small lesions were initially observed on the upper part of the leaves from May to June 2019, which later developed into larger brown necrotic leaf lesions. Over time, these lesions greatly impacted the medicinal value (dendrobine) and productivity of the plant. A pure culture of Xylaria flabelliformis from infected wild D. nobile leaves was recovered and subsequently cultured on potato dextrose agar (PDA) at 25 °C for 5 days. Xylaria flabelliformis grew slowly and was composed of white mycelia. Colonies were initially white, with a regular margin, and formed stromata that consisted of mycelia sterilia without ascospores. We identified the strain as Xylaria flabelliformis based on its morphological characteristics (Liu et al., 2007) and by sequencing elongation factor-1α (EF-1α). The length of the DNA sequence of EF-1α that was used for the analysis of Xylaria flabelliformis was 1188 bp. BLASTx (nucleotide 6-frame translation-protein) analysis using the National Center for Biotechnology Information database showed that the obtained protein sequence (BLASTx protein accession no.: UTS95822.1, BLASTn nucleotide sequence accession no.: MW508334.1) had the highest similarity (98.21%) with the X. flabelliformis hypothetical protein (TRX95197.1) based on a thorough phylogenetic comparison with other Xylaria species. Healthy D. nobile seedlings were planted in pots and sterilized. The terminal leaves were excised from all pre-sterilised D. nobile seedlings and inoculated with Xylaria flabelliformis mycelial plugs, whereas sterile PDA plugs and moist cotton plugs were used as controls. All seedlings were maintained under optimum temperature and humidity conditions (25 °C and 80%, respectively) for seven days for observation and analysis. All experiments were performed in triplicate. After the incubation period, brown leaf rot lesions were observed for the first time on the inoculated D. nobile leaves, but no symptoms were observed on the leaves of the two control groups (sterile PDA plugs and moist cotton plugs). To complete Koch's postulates, Xylaria flabelliformis was re-isolated and identified from all diseased tissues by DNA sequencing of the EF-1α. It was determined for the first time that Xylaria flabelliformis can cause brown leaf lesions in D. nobile. Moreover, the pathogenicity of Xylaria flabelliformis in D. nobile has not been previously reported (Mead et al., 2019; Meng et al., 2019; Sarsaiya et al., 2019a; Sarsaiya et al., 2020b; Chen et al., 2023; Rinchen, 2023; Cao et al., 2024). To the best of our knowledge, this is the first report of BLRS lesions in D. nobile leaves caused by Xylaria flabelliformis in Guizhou Province, China. Identification of Xylaria flabelliformis as a pathogen of D. nobile is crucial for advancing effective management and control practices against brown leaf rot disease. This discovery provides valuable insights into the development of targeted strategies to mitigate the impact of Xylaria flabelliformis on D. nobile, safeguard medicinal properties such as dendrobine, and enhance overall productivity.

3.
Front Plant Sci ; 15: 1343222, 2024.
Article in English | MEDLINE | ID: mdl-38650701

ABSTRACT

Bulbil is an important asexual reproductive structure of bulbil plants. It mainly grows in leaf axils, leaf forks, tubers and the upper and near ground ends of flower stems of plants. They play a significant role in the reproduction of numerous herbaceous plant species by serving as agents of plant propagation, energy reserves, and survival mechanisms in adverse environmental conditions. Despite extensive research on bulbil-plants regarding their resources, development mechanisms, and utilisation, a comprehensive review of bulbil is lacking, hindering progress in exploiting bulbil resources. This paper provides a systematic overview of bulbil research, including bulbil-plant resources, identification of development stages and maturity of bulbils, cellular and molecular mechanisms of bulbil development, factors influencing bulbil development, gene research related to bulbil development, multi-bulbil phenomenon and its significance, medicinal value of bulbils, breeding value of bulbils, and the application of plant tissue culture technology in bulbil production. The application value of the Temporary Immersion Bioreactor System (TIBS) and Terahertz (THz) in bulbil breeding is also discussed, offering a comprehensive blueprint for further bulbil resource development. Additionally, additive, seven areas that require attention are proposed: (1) Utilization of modern network technologies, such as plant recognition apps or websites, to collect and identify bulbous plant resources efficiently and extensively; (2) Further research on cell and tissue structures that influence bulb cell development; (3) Investigation of the network regulatory relationship between genes, proteins, metabolites, and epigenetics in bulbil development; (4) Exploration of the potential utilization value of multiple sprouts, including medicinal, ecological, and horticultural applications; (5) Innovation and optimization of the plant tissue culture system for bulbils; (6) Comprehensive application research of TIBS for large-scale expansion of bulbil production; (7) To find out the common share genetics between bulbils and flowers.

4.
Front Plant Sci ; 15: 1302817, 2024.
Article in English | MEDLINE | ID: mdl-38348269

ABSTRACT

Introduction: Dendrobine, a valuable alkaloid found in Dendrobium nobile, possesses significant pharmaceutical potential. Methods: In this study, we explored innovative approaches to enhance dendrobine production by utilizing endophytic fungi in a Temporary Immersion Bioreactor System (TIBS, Nanjing BioFunction Co. Ltd., China) and traditional test bottles. Dendrobine was unequivocally identified and characterised in D. nobile co-culture seedlings through UHPLC analysis and LC-MS qTOF analysis, supported by reference standards. Results: The CGTB (control group) and EGTB (experimental group) 12-month-old D. nobile seedlings exhibited similar peak retention times at 7.6±0.1 minutes, with dendrobine identified as C16H25NO2 (molecular weight 264.195). The EGTB, co-cultured with Trichoderma longibrachiatum (MD33), displayed a 2.6-fold dendrobine increase (1804.23 ng/ml) compared to the CGTB (685.95 ng/ml). Furthermore, a bioanalytical approach was applied to investigate the mono-culture of T. longibrachiatum MD33 with or without D. nobile seedlings in test bottles. The newly developed UHPLC-MS method allowed for dendrobine identification at a retention time of 7.6±0.1 minutes for control and 7.6±0.1 minutes for co-culture. Additionally, we explored TIBS to enhance dendrobine production. Co-culturing D. nobile seedlings with Trichoderma longibrachiatum (MD33) in the TIBS system led to a substantial 9.7-fold dendrobine increase (4415.77 ng/ml) compared to the control (454.01 ng/ml) after just 7 days. The comparative analysis of dendrobine concentration between EGTB and EGTIBS highlighted the remarkable potential of TIBS for optimizing dendrobine production. Future research may focus on scaling up the TIBS approach for commercial dendrobine production and investigating the underlying mechanisms for enhanced dendrobine biosynthesis in D. nobile. The structural elucidation of dendrobine was achieved through 1H and 13C NMR spectroscopy, revealing a complex array of proton environments and distinct carbon environments, providing essential insights for the comprehensive characterization of the compound. Discussion: These findings hold promise for pharmaceutical and industrial applications of dendrobine and underline the role of endophytic fungi in enhancing secondary metabolite production in medicinal plants.

5.
Physiol Plant ; 176(1): e14195, 2024.
Article in English | MEDLINE | ID: mdl-38332400

ABSTRACT

This review aims to elucidate the intricate effects and mechanisms of terahertz (THz) wave stress on Pinellia ternata, providing valuable insights into plant responses. The primary objective is to highlight the imperative for future research dedicated to comprehending THz wave impacts across plant structures, with a specific focus on the molecular intricacies governing root system structure and function, from shoots to roots. Notably, this review highlights the accelerated plant growth induced by THz waves, especially in conjunction with other environmental stressors, and the subsequent alterations in cellular homeostasis, resulting in the generation of reactive oxygen species (ROS) and an increase in brassinosteroids. Brassinosteroids are explored for their dual role as toxic by-products of stress metabolism and vital signal transduction molecules in plant responses to abiotic stresses. The paper further investigates the spatio-temporal regulation and long-distance transport of phytohormones, including growth hormone, cytokinin, and abscisic acid (ABA), which significantly influence the growth and development of P. ternata under THz wave stress. With a comprehensive review of Reactive oxygen species (ROS) and Brassinosteroid Insensitive (BRI) homeostasis and signalling under THz wave stress, the article elucidates the current understanding of BRI involvement in stress perception, stress signalling, and domestication response regulation. Additionally, it underscores the importance of spatio-temporal regulation and long-distance transport of key plant hormones, such as growth hormone, cytokinin, and ABA, in determining root growth and development under THz wave stress. The study of how plants perceive and respond to environmental stresses holds fundamental biological significance, and enhancing plant stress tolerance is crucial for promoting sustainable agricultural practices and mitigating the environmental burdens associated with low-tolerance crop cultivation.


Subject(s)
Brassinosteroids , Pinellia , Brassinosteroids/metabolism , Reactive Oxygen Species/metabolism , Pinellia/metabolism , Plant Growth Regulators/metabolism , Abscisic Acid/metabolism , Stress, Physiological , Cytokinins/metabolism , Plants/metabolism , Growth Hormone/metabolism , Growth Hormone/pharmacology
6.
Front Mol Neurosci ; 16: 1246842, 2023.
Article in English | MEDLINE | ID: mdl-37840772

ABSTRACT

This study explores the implications of a novel germline missense mutation (R38C) in the succinate dehydrogenase (SDH) subunit B, which has been linked to neurodegenerative diseases. The mutation was identified from the SDH mutation database and corresponds to the SDH2R32C allele, mirroring the human SDHBR38C mutation. By subjecting the mutant yeast model to hydrogen peroxide (H2O2) stress, simulating oxidative stress, we observed heightened sensitivity to oxidative conditions. Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) analysis revealed significant regulation (p < 0.05) of genes associated with antioxidant systems and energy metabolism. Through gas chromatography-mass spectrometry (GC-MS) analysis, we examined yeast cell metabolites under oxidative stress, uncovering insights into the potential protective role of o-vanillin. This study elucidates the biological mechanisms underlying cellular oxidative stress responses, offering valuable insights into its repercussions. These findings shed light on innovative avenues for addressing neurodegenerative diseases, potentially revolutionizing therapeutic strategies.

7.
Front Plant Sci ; 14: 1227507, 2023.
Article in English | MEDLINE | ID: mdl-37771489

ABSTRACT

Pinellia ternata (Thunb.) Breit. (Araceae), a significant medicinal plant, has been used to treat various diseases for centuries. Terahertz radiation (THZ) is located between microwaves and infrared rays on the electromagnetic spectrum. THZ possesses low single-photon energy and a spectral fingerprint, but its effects on plant growth have not yet been investigated. The study's primary objective was to examine the transcriptome and metabolome databases of the SY line to provide a new perspective for identifying genes associated with resistance and growth promotion and comprehending the underlying molecular mechanism. Variations in the biological characteristics of P. ternata grown under control and experimental conditions were analyzed to determine the effect of THZ. Compared with the control group, phenotypic variables such as leaf length, petiole length, number of leaves, leaf petiole diameter, and proliferation coefficient exhibited significant differences. P. ternata response to THZ was analyzed regarding the effects of various coercions on root exudation. The experimental group contained considerably more sugar alcohol than the control group. The transcriptome analysis revealed 1,695 differentially expressed genes (DEGs), including 509 upregulated and 1,186 downregulated genes. In the KEGG-enriched plant hormone signaling pathway, there were 19 differentially expressed genes, 13 of which were downregulated and six of which were upregulated. In the metabolomic analysis, approximately 416 metabolites were uncovered. There were 112 DEMs that were downregulated, whereas 148 were upregulated. The P. ternata leaves displayed significant differences in phytohormone metabolites, specifically in brassinolide (BR) and abscisic acid (ABA). The rise in BR triggers alterations in internal plant hormones, resulting in faster growth and development of P. ternata. Our findings demonstrated a link between THZ and several metabolic pathway processes, which will enhance our understanding of P. ternata mechanisms.

8.
Front Microbiol ; 13: 890733, 2022.
Article in English | MEDLINE | ID: mdl-35979500

ABSTRACT

Dendrobine is a representative component of Dendrobium nobile, and its pharmacological effects have been extensively studied. Trichoderma longibrachiatum MD33 was isolated from the stem of Dendrobium nobile which can produce dendrobine. In order to understand the effect of Methyl Jasmonate (MeJA) on the production of dendrobine, transcriptome analysis was performed after MeJA treatment in the MD33 and control groups. The dendrobine production of MeJA (20 µmol/L) treatment group was 44.6% higher than that of control. In this study, the RNA sequencing technology was applied, a total of 444 differentially expressed genes (DEGs) in the control and MeJA treatment groups, including 226 up-regulated genes and 218 down-regulated genes. The Kyoto Encyclopedia of Genes and Genomes annotation showed that numbers of DEGs were associated with the putative alkaloid biosynthetic pathway in T Trichoderma longibrachiatum MD33. Several MVA pathway enzyme-coding genes (isopentenyl-diphosphate Delta-isomerase, iphosphomevalonate decarboxylase and farnesyl diphosphate synthase) were found to be differentially expressed, suggesting an active precursor supply for alkaloid biosynthesis after MeJA treatment, in other wise, dendrobine may synthesis through the MVA pathway in MD33. Numerous MeJA-induced P450 family genes, aminotransferase genes and methyltransferase genes were identified, providing several important candidates to further elucidate the dendrobine biosynthetic pathway of T. longibrachiatum MD33. Furthermore, several MeJA-induced transcription factors (TFs) encoding genes were identified, suggesting a complex genetic network affecting the dendrobine in T. longibrachiatum MD33. These findings reveal the regulation mechanism underlying the MeJA-induced accumulation of dendrobine in T. longibrachiatum MD33.

9.
Bioresour Technol ; 360: 127565, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35788392

ABSTRACT

This review provides an update on the state-of-the art technologies for the valorization of solid waste and its mechanism to generate various bio-products. The organic content of these wastes can be easily utilized by the microbes and produce value-added compounds. Microbial fermentation techniques can be utilized for developing waste biorefinery processes. The utilization of lignocellulosic and plastics wastes for the generation of carbon sources for microbial utilization after pre-processing steps will make the process a multi-product biorefinery. The C1 and C2 gases generated from different industries could also be utilized by various microbes, and this will help to control global warming. The review seeks to expand expertise about the potential application through several perspectives, factors influencing remediation, issues, and prospects.


Subject(s)
Biofuels , Solid Waste , Biofuels/analysis , Fermentation
10.
Environ Pollut ; 307: 119600, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35691442

ABSTRACT

Recent years have seen upsurge in plastic manufacturing and its utilization in various fields, such as, packaging, household goods, medical applications, and beauty products. Due to various adverse impacts imposed by synthetic plastics on the health of living well-being and the environment, the biopolymers have been emerged out an alternative. Although, the biopolymers such as polyhydroxyalkanoates (PHA) are entirely degradable. However, the other polymers, such as poly (lactic acid) (PLA) are only partially degradable and often not biosynthesized. Biodegradation of the polymers using microorganisms is considered an effective bioremediation approach. Biodegradation can be performed in aerobic and anaerobic environments. In this context, the present review discusses the biopolymer production, their persistence in the environment, aerobic biodegradation, anaerobic biodegradation, challenges associated with biodegradation and future perspectives. In addition, this review discusses the advancement in the technologies associated with biopolymer production, biodegradation, and their biodegradation standard in different environmental settings. Furthermore, differences in the degradation condition in the laboratory as well as on-site are discussed.


Subject(s)
Polyhydroxyalkanoates , Biodegradation, Environmental , Biopolymers , Plastics/metabolism
11.
Environ Sci Pollut Res Int ; 29(13): 18440-18451, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35037150

ABSTRACT

The negative health effects of cement plant exposure are well-known in industrial settings, but they are less well-known among the general public who live near plants. The broad objective of the review was to provide a detailed systematic analysis of the global situation of the cement industry, including generation, pollution, impact on the natural ecosystem, technological and process improvements, sustainable models, the latest laws, challenges, needs, and ways forward. As an initial evaluation, a list of critical keywords was compiled, and a search of all accessible databases was conducted (i.e., Scopus, Web of Knowledge, Google Scholar). The manuscripts published in the journal between 2011 and 2021 were included. According to the findings, India is the second largest cement producer after China, with an installed capacity of 537 million tonnes and around 7.1 percent of the world's production, up from 337.32 million tonnes in 2019. NOx, SOx, CO, CO2, H2S, VOCs, dioxins, furans, and particulate matter are all common air pollutants from cement manufacturing. Other sources of dust particles include quarrying, blasting, drilling, trucking, cement plants, fuel production, packaging, path cleaning, and slabs. Other methods of reduction play an important part in decreasing industrial emissions, resulting in lower carbon and more sustainable products. The decision-making trial, in conjunction with the DEMATEL evaluation laboratory and the analytical hierarchy process (AHP) technique, will aid in determining the priority of climate alteration and mitigation options. Furthermore, employing sustainable techniques and technology, switching to alternative fuels will save 12% of total CO2 emissions by 2050.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Ecosystem , Environment , Industry , Particulate Matter/analysis
12.
Bioresour Technol ; 344(Pt A): 126193, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34710613

ABSTRACT

In this review article, discuss the many ways utilized by the dairy sector to treat pollutants, emphasizing their influence on the quality and efficiency with which contamination is removed. It focuses on biotechnology possibilities for valorizing dairy waste in particular. The findings revealed that dairy waste may be treated using physicochemical, biological, and biotechnological techniques. Notably, this article highlighted the possibility of dairy waste being used as a feedstock not only for the generation of biogas, bioethanol, biohydrogen, microbial fuel cells, lactic acid, and fumaric acid via microbial technology but also for the production of biooil and biochar by pyrolysis. In addition, this article critically evaluates the many treatment techniques available for recovering energy and materials from dairy waste, their combinations, and implementation prospects. Valorization of dairy waste streams presents an opportunity to extend the dairy industry's presence in the fermented functional beverage sector.


Subject(s)
Bioelectric Energy Sources , Biofuels , Biotechnology
13.
Sci Total Environ ; 802: 149823, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34454140

ABSTRACT

Rising level of micro-nano plastics (MNPs) in the natural ecosystem adversely impact the health of the environment and living organisms globally. MNPs enter in to the agro-ecosystem, flora and fauna, and human body via trophic transfer, ingestion and inhalation, resulting impediment in blood vessel, infertility, and abnormal behaviors. Therefore, it becomes indispensable to apply a novel approach to remediate MNPs from natural environment. Amongst the several prevailing technologies of MNPs remediation, microbial remediation is considered as greener technology. Microbial degradation of plastics is typically influenced by several biotic as well as abiotic factors, such as enzymatic mechanisms, substrates and co-substrates concentration, temperature, pH, oxidative stress, etc. Therefore, it is pivotal to recognize the key pathways adopted by microbes to utilize plastic fragments as a sole carbon source for the growth and development. In this context, this review critically discussed the role of various microbes and their enzymatic mechanisms involved in biodegradation of MNPs in wastewater (WW) stream, municipal sludge, municipal solid waste (MSW), and composting starting with biological and toxicological impacts of MNPs. Moreover, this review comprehensively discussed the deployment of various MNPs remediation technologies, such as enzymatic, advanced molecular, and bio-membrane technologies in fostering the bioremediation of MNPs from various environmental compartments along with their pros and cons and prospects for future research.


Subject(s)
Microplastics , Plastics , Biodegradation, Environmental , Ecosystem , Humans , Wastewater
14.
Environ Technol ; 43(26): 4189-4199, 2022 Nov.
Article in English | MEDLINE | ID: mdl-34184619

ABSTRACT

A new type of imitation rattan was developed via a two-step method that used modified wheat straw as the raw materials and low-density polyethylene to make up wood plastic composite. Post-modification, a graft condensation reaction was carried out between silane as a coupling agent and wheat straw powder, which improved the thermal stability of the composite. A high level of contact and interaction at the fibre-matrix interface was observed. The optimum formula for the first step was 80% wheat straw powder, 4% silane coupling agent, and 16% calcium carbonate, with a modification temperature of 120 °C sustained for 10 min. For the second step, the mechanical properties had been greatly improved with the addition of modified wheat straw fibre and maleic anhydride grafted polypropylene (MA-g-PP). The use of 10% modified straw fibre and 5% MA-g-PP exhibited the highest tensile strength (8.75 MPa) and highest melt index (2.86 g/10 min). In particular, the MA-g-PP had an extremely advantage to the elastic modulus of wheat straw imitation rattan. The elastic modulus reached the maximum value of 2761.70 MPa at the amount of MA-g-PP added reached 5%. Our present study indicated the innovation of a new type of imitation rattan, which provides a new choice for utilizing wheat straw as industrial raw material, and other agricultural by-products containing liginocellulose could be used in a similar way.


Subject(s)
Polyethylene , Triticum , Materials Testing , Silanes , Powders , Imitative Behavior , Maleic Anhydrides , Polypropylenes
15.
Chemosphere ; 290: 133310, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34919909

ABSTRACT

Poly-3-hydroxyalkanoates (PHA) are biodegradable and compostable polyesters. This review is aimed to provide a unique approach that can help think tanks to frame strategies aiming for clean technology by utilizing cutting edge biotechnological advances to convert fruit and vegetable waste to biopolymer. A PHA manufacturing method based on watermelon waste residue that does not require extensive pretreatment provides a more environmentally friendly and sustainable approach that utilizes an agricultural waste stream. Incorporating fruit processing industry by-products and water, and other resource conservation methods would not only make the manufacturing of microbial bio-plastics like PHA more eco-friendly, but will also help our sector transition to a bioeconomy with circular product streams. The final and most critical element of this review is an in-depth examination of the several hazards inherent in PHA manufacturing.


Subject(s)
Citrullus , Polyhydroxyalkanoates , Biopolymers , Biotechnology , Polyesters
16.
Bioengineered ; 12(2): 10269-10301, 2021 12.
Article in English | MEDLINE | ID: mdl-34709979

ABSTRACT

Biochar's ability to mediate and facilitate microbial contamination degradation, as well as its carbon-sequestration potential, has sparked interest in recent years. The scope, possible advantages (economic and environmental), and future views are all evaluated in this review. We go over the many designed processes that are taking place and show why it is critical to look into biochar production for resource recovery and the role of bioengineered biochar in waste recycling. We concentrate on current breakthroughs in the fields of engineered biochar application techniques to systematically and sustainable technology. As a result, this paper describes the use of biomass for biochar production using various methods, as well as its use as an effective inclusion material to increase performance. The impact of biochar amendments on microbial colonisation, direct interspecies electron transfer, organic load minimization, and buffering maintenance is explored in detail. The majority of organic and inorganic (heavy metals) contaminants in the environment today are caused by human activities, such as mining and the use of chemical fertilizers and pesticides, which can be treated sustainably by using engineered biochar to promote the establishment of a sustainable engineered process by inducing the circular bioeconomy.


Subject(s)
Bioengineering/economics , Charcoal/economics , Bacteria/enzymology , Biodegradation, Environmental , Recycling , Waste Products/analysis
17.
Chemosphere ; 284: 131427, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34323796

ABSTRACT

Apple pomace, the residue which is left out after processing of apple serves as a potential carbon source for the production of biopolymer, PHA (poly-hydroxyalkanoates). It is rich in carbohydrates, fibers and polyphenols. Utilization of these waste resources has dual societal benefit-waste management and conversion of waste to an eco-friendly biopolymer. This will lower the overall economics of the process. A major limitation for the commercialization of biopolymer in comparison with petroleum derived polymer is the high cost. This article gives an overview of valorization of apple pomace for the production of biopolymer, various strategies adopted, limitations as well as future perspectives.


Subject(s)
Malus , Polyhydroxyalkanoates , Biopolymers , Carbon , Industrial Waste
18.
Bioresour Technol ; 337: 125451, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34186328

ABSTRACT

This review focuses on a holistic view of biochar, production from feedstock's, engineering production strategies, its applications and future prospects. This article reveals a systematic emphasis on the continuation and development of biochar and its production methods such as Physical engineering, chemical and bio-engineering techniques. In addition, biochar alternatives such as nutrient formations and surface area made it a promising cheap source of carbon-based products such as anaerobic digestion, gasification, and pyrolysis, commercially available wastewater treatment, carbons, energy storage, microbial fuel cell electrodes, and super-capacitors repair have been reviewed. This paper also covers the knowledge blanks of strategies and ideas for the future in the field of engineering biochar production techniques and application as well as expand the technology used in the circular bio-economy.


Subject(s)
Charcoal , Soil , Biomass , Pyrolysis
19.
J Biomed Nanotechnol ; 17(3): 416-425, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33875076

ABSTRACT

Emergency of nanoparticulate drug delivery systems has improved the target, bioavailability, and curative effect of traditional Chinese medicine (TCM). However, the application of nano-preparation has been limited owing to the low content of active ingredients in part TCM. MicroRNAs (miRNAs) regulate plant growth, development, and response to environmental stresses at post-transcriptional regulation level by cleavage or translational inhibition. The molecular functions of miRNAs playing a role in synthesizing active comportments at medicinal plants have been widely researched. Dendrobium nobile is a perennial herb in the orchidaceae family. D. nobile protocorm can produce plant-specific metabolites at a short period. Therefore, it is a good substitute for producing metabolites. To understand the functions of miRNAs in D. nobile protocorm, Illumina sequencing of D. nobile protocorm (Dnp), D. officinale protocorm (Dcp), and D. nobile leaf (Dnl) were carried out. A total of 439, 412, and 432 miRNAs were identified from Dnp, Dcp, and Dnl, respectively. Some specific miRNAs were identified among them. Through combing GO and KEGG function annotation, miRNAs mainly involved metabolic pathways, plant hormone signal transduction, biological regulation, and protein binding. Acetyl-CoA acetyltransferase (AACT), mevalonate kinase (MK), 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR), and 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase (HDS), synthesizing basic precursor isoprene pyrophosphate (IPP) in terpenoid backbone biosynthesis pathway, were predicted as potential targets of 6 different miRNAs. Twenty-six miRNAs participated in auxin, cytokinin, abscisic acid, jasmonic acid, and salicylic acid signal transduction pathway. This report provided valuable candidate genes in Dnp involved in terpenoid biosynthesis and plant hormone signal transduction pathway. At the same time, it can help accelerate the use of dendrobine into nano preparation.


Subject(s)
Alkaloids , Dendrobium , MicroRNAs , Dendrobium/genetics , High-Throughput Nucleotide Sequencing , MicroRNAs/genetics
20.
Bioengineered ; 12(1): 1173-1188, 2021 12.
Article in English | MEDLINE | ID: mdl-33830860

ABSTRACT

Transcriptome is used to determine the induction response of Pinellia ternata (Thunb.) Breit T2 plus line (abbreviated as PT2P line) infected with Pectobacterium carotovorum. The main objective of the study was to deal with the transcriptome database of PT2P line resistance to soft rot pathogens to provide a new perspective for identifying the resistance-related genes and understanding the molecular mechanism. Results indicated that water soaking and tissue collapse started at 20 h after PT2P line was infected by P. carotovorum. A total of 1360 and 5768 differentially expressed genes (DEGs) were identified at 0 h and 20 h, respectively. After 20 h of infection, growth and development-related pathways were inhibited. Meanwhile, DEGs were promoted the colonization of P. carotovorum pathogens in specific cell wall modification processes at the early infected stage. A shift to a defensive response was triggered at 0 h. A large number of DEGs were mainly up-controlled at 20 h and were substantially used in the pathogen recognition and the introduction of signal transformation cascades, secondary metabolites biosynthesis, pathogenic proteins activation, transcription aspects and numerous transporters. Furthermore, our data provided novel insights into the transcript reprogramming of PT2P line in response to P. carotovorum infestation.


Subject(s)
Gene Expression Profiling , Host-Pathogen Interactions/genetics , Pectobacterium carotovorum/physiology , Pinellia/genetics , Pinellia/microbiology , Plant Diseases/genetics , Plant Diseases/microbiology , Gene Expression Regulation, Plant , Gene Ontology , Molecular Sequence Annotation , Plant Growth Regulators/metabolism , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...