Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Sci Data ; 11(1): 617, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866801

ABSTRACT

In this study we examine the impact of cell confluency on gene expression. We focused on Argonaute (AGO) protein dynamics and associated gene and protein expression in HEK293, A375, and SHSY5Y cell lines. As a consequence of cell confluency, AGO2 protein translocates into the nucleus. Therefore, we generated transcriptomic data using RNA sequencing to compare gene expression in subconfluent versus confluent cells, which highlighted significant alterations in gene regulation patterns directly corresponding to changes in cell density. Our study also encompasses miRNA profiling data obtained through small RNA sequencing, revealing miRNA expressional changes dependent on cellular confluency, as well as cellular localization. Finally, we derived proteomic data from mass spectrometry analyses following AGO1-4 immunoprecipitation, providing a comprehensive view of AGO interactome in both nuclear and cytoplasmic compartments under varying confluency. These datasets offer a detailed exploration of the cellular and molecular dynamics, influenced by cell confluency, presenting a valuable resource for further research in cellular biology, particularly in understanding the basic mechanisms of cell density in cancer cells.


Subject(s)
Argonaute Proteins , Proteomics , Transcriptome , Humans , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , HEK293 Cells , Cell Line, Tumor , Gene Expression Profiling
2.
Curr Protoc ; 4(5): e1042, 2024 May.
Article in English | MEDLINE | ID: mdl-38767195

ABSTRACT

Biochemical fractionation is a technique used to isolate and separate distinct cellular compartments, critical for dissecting cellular mechanisms and molecular pathways. Herein we outline a biochemical fraction methodology for isolation of ultra-pure nuclei and cytoplasm. This protocol utilizes hypotonic lysis buffer to suspend cells, coupled with a calibrated centrifugation strategy, for enhanced separation of cytoplasm from the nuclear fraction. Subsequent purification steps ensure the integrity of the isolated nuclear fraction. Overall, this method facilitates accurate protein localization, essential for functional studies, demonstrating its efficacy in separating cellular compartments. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Biochemical fractionation Support Protocol 1: Protein quantification using Bradford assay Support Protocol 2: SDS/PAGE and Western blotting.


Subject(s)
Cell Fractionation , Cell Nucleus , Cytoplasm , Cytoplasm/metabolism , Cytoplasm/chemistry , Cell Nucleus/metabolism , Cell Nucleus/chemistry , Cell Fractionation/methods , Humans , Electrophoresis, Polyacrylamide Gel , Blotting, Western
3.
Cancers (Basel) ; 13(4)2021 Feb 13.
Article in English | MEDLINE | ID: mdl-33668654

ABSTRACT

Argonaute proteins (AGOs) play crucial roles in RNA-induced silencing complex (RISC) formation and activity. AGOs loaded with small RNA molecules (miRNA or siRNA) either catalyze endoribonucleolytic cleavage of target RNAs or recruit factors responsible for translational silencing and target destabilization. miRNAs are well characterized and broadly studied in tumorigenesis; nevertheless, the functions of the AGOs in cancers have lagged behind. Here, we discuss the current state of knowledge on the role of AGOs in tumorigenesis, highlighting canonical and non-canonical functions of AGOs in cancer cells, as well as the biomarker potential of AGO expression in different of tumor types. Furthermore, we point to the possible application of the AGOs in development of novel therapeutic approaches.

4.
Science ; 365(6452)2019 08 02.
Article in English | MEDLINE | ID: mdl-31371577

ABSTRACT

Laboratory mouse studies are paramount for understanding basic biological phenomena but also have limitations. These include conflicting results caused by divergent microbiota and limited translational research value. To address both shortcomings, we transferred C57BL/6 embryos into wild mice, creating "wildlings." These mice have a natural microbiota and pathogens at all body sites and the tractable genetics of C57BL/6 mice. The bacterial microbiome, mycobiome, and virome of wildlings affect the immune landscape of multiple organs. Their gut microbiota outcompete laboratory microbiota and demonstrate resilience to environmental challenges. Wildlings, but not conventional laboratory mice, phenocopied human immune responses in two preclinical studies. A combined natural microbiota- and pathogen-based model may enhance the reproducibility of biomedical studies and increase the bench-to-bedside safety and success of immunological studies.


Subject(s)
Animals, Wild/microbiology , Gastrointestinal Microbiome , Host Microbial Interactions/immunology , Host-Pathogen Interactions/immunology , Immunity , Animals , Humans , Mice , Mice, Inbred C57BL , Models, Animal , Translational Research, Biomedical/standards
5.
Cancer Res ; 79(13): 3294-3305, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31101765

ABSTRACT

Dysregulation of miRNA expression is associated with multiple diseases, including cancers, in which small RNAs can have either oncogenic or tumor suppressive functions. Here we investigated the potential tumor suppressive function of miR-450a, one of the most significantly downregulated miRNAs in ovarian cancer. RNA-seq analysis of the ovarian cancer cell line A2780 revealed that overexpression of miR-450a suppressed multiple genes involved in the epithelial-to-mesenchymal transition (EMT). Overexpression of miR-450a reduced tumor migration and invasion and increased anoikis in A2780 and SKOV-3 cell lines and reduced tumor growth in an ovarian tumor xenographic model. Combined AGO-PAR-CLIP and RNA-seq analysis identified a panel of potential miR-450a targets, of which many, including TIMMDC1, MT-ND2, ACO2, and ATP5B, regulate energetic metabolism. Following glutamine withdrawal, miR-450a overexpression decreased mitochondrial membrane potential but increased glucose uptake and viability, characteristics of less invasive ovarian cancer cell lines. In summary, we propose that miR-450a acts as a tumor suppressor in ovarian cancer cells by modulating targets associated with glutaminolysis, which leads to decreased production of lipids, amino acids, and nucleic acids, as well as inhibition of signaling pathways associated with EMT. SIGNIFICANCE: miR-450a limits the metastatic potential of ovarian cancer cells by targeting a set of mitochondrial mRNAs to reduce glycolysis and glutaminolysis.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/13/3294/F1.large.jpg.


Subject(s)
Biomarkers, Tumor/metabolism , Energy Metabolism , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Aconitate Hydratase/genetics , Aconitate Hydratase/metabolism , Animals , Apoptosis , Biomarkers, Tumor/genetics , Cell Cycle , Cell Movement , Cell Proliferation , Female , Humans , Membrane Potential, Mitochondrial , Mice , Mice, Inbred NOD , Mice, SCID , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Precursor Protein Import Complex Proteins , Mitochondrial Proton-Translocating ATPases/genetics , Mitochondrial Proton-Translocating ATPases/metabolism , NADH Dehydrogenase/genetics , NADH Dehydrogenase/metabolism , Ovarian Neoplasms/genetics , Prognosis , Survival Rate , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
6.
Elife ; 72018 10 16.
Article in English | MEDLINE | ID: mdl-30324908

ABSTRACT

CD95/Fas ligand binds to the death receptor CD95 to induce apoptosis in sensitive cells. We previously reported that CD95L mRNA is enriched in sequences that, when converted to si/shRNAs, kill all cancer cells by targeting critical survival genes (Putzbach et al., 2017). We now report expression of full-length CD95L mRNA itself is highly toxic to cells and induces a similar form of cell death. We demonstrate that small (s)RNAs derived from CD95L are loaded into the RNA induced silencing complex (RISC) which is required for the toxicity and processing of CD95L mRNA into sRNAs is independent of both Dicer and Drosha. We provide evidence that in addition to the CD95L transgene a number of endogenous protein coding genes involved in regulating protein translation, particularly under low miRNA conditions, can be processed to sRNAs and loaded into the RISC suggesting a new level of cell fate regulation involving RNAi.


Subject(s)
Fas Ligand Protein/genetics , RNA, Messenger/genetics , RNA, Messenger/urine , RNA-Induced Silencing Complex/genetics , fas Receptor/genetics , Apoptosis/genetics , Fas Ligand Protein/chemistry , Gene Expression Regulation/genetics , HCT116 Cells , Humans , MicroRNAs/chemistry , MicroRNAs/genetics , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , RNA-Induced Silencing Complex/chemistry , fas Receptor/chemistry
7.
Nat Commun ; 9(1): 4504, 2018 10 29.
Article in English | MEDLINE | ID: mdl-30374110

ABSTRACT

Many small-interfering (si)RNAs are toxic to cancer cells through a 6mer seed sequence (positions 2-7 of the guide strand). Here we performed an siRNA screen with all 4096 6mer seeds revealing a preference for guanine in positions 1 and 2 and a high overall G or C content in the seed of the most toxic siRNAs for four tested human and mouse cell lines. Toxicity of these siRNAs stems from targeting survival genes with C-rich 3'UTRs. The master tumor suppressor miRNA miR-34a-5p is toxic through such a G-rich 6mer seed and is upregulated in cells subjected to genotoxic stress. An analysis of all mature miRNAs suggests that during evolution most miRNAs evolved to avoid guanine at the 5' end of the 6mer seed sequence of the guide strand. In contrast, for certain tumor-suppressive miRNAs the guide strand contains a G-rich toxic 6mer seed, presumably to eliminate cancer cells.


Subject(s)
Cell Line, Tumor/drug effects , MicroRNAs/toxicity , RNA, Small Interfering/toxicity , Animals , Cell Survival/drug effects , DNA Damage/drug effects , Gene Targeting , Genes, Essential/drug effects , Guanine , Humans , Mice , Neoplasms/drug therapy , Untranslated Regions
8.
Mol Cell ; 71(6): 1040-1050.e8, 2018 09 20.
Article in English | MEDLINE | ID: mdl-30146314

ABSTRACT

In mammals, gene silencing by the RNA-induced silencing complex (RISC) is a well-understood cytoplasmic posttranscriptional gene regulatory mechanism. Here, we show that embryonic stem cells (ESCs) contain high levels of nuclear AGO proteins and that in ESCs nuclear AGO protein activity allows for the onset of differentiation. In the nucleus, AGO proteins interact with core RISC components, including the TNRC6 proteins and the CCR4-NOT deadenylase complex. In contrast to cytoplasmic miRNA-mediated gene silencing that mainly operates on cis-acting elements in mRNA 3' untranslated (UTR) sequences, in the nucleus AGO binding in the coding sequence and potentially introns also contributed to post-transcriptional gene silencing. Thus, nuclear localization of AGO proteins in specific cell types leads to a previously unappreciated expansion of the miRNA-regulated transcriptome.


Subject(s)
Argonaute Proteins/physiology , Gene Silencing/physiology , MicroRNAs/physiology , Animals , Argonaute Proteins/genetics , Cell Differentiation/genetics , Cell Line , Cell Nucleus , Cytoplasm , Embryonic Stem Cells/metabolism , Humans , Mammals , Mice , MicroRNAs/genetics , RNA Interference , RNA Stability , RNA, Messenger , RNA, Small Interfering , RNA-Binding Proteins , RNA-Induced Silencing Complex/genetics , RNA-Induced Silencing Complex/metabolism , Transcription Factors
9.
Mol Cell ; 71(1): 129-141.e8, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29979962

ABSTRACT

The enhancer regions of the myogenic master regulator MyoD give rise to at least two enhancer RNAs. Core enhancer eRNA (CEeRNA) regulates transcription of the adjacent MyoD gene, whereas DRReRNA affects expression of Myogenin in trans. We found that DRReRNA is recruited at the Myogenin locus, where it colocalizes with Myogenin nascent transcripts. DRReRNA associates with the cohesin complex, and this association correlates with its transactivating properties. Despite being expressed in undifferentiated cells, cohesin is not loaded on Myogenin until the cells start expressing DRReRNA, which is then required for cohesin chromatin recruitment and maintenance. Functionally, depletion of either cohesin or DRReRNA reduces chromatin accessibility, prevents Myogenin activation, and hinders muscle cell differentiation. Thus, DRReRNA ensures spatially appropriate cohesin loading in trans to regulate gene expression.


Subject(s)
Cell Cycle Proteins/biosynthesis , Chromosomal Proteins, Non-Histone/biosynthesis , Enhancer Elements, Genetic , Muscle, Skeletal/metabolism , Myogenin/biosynthesis , RNA, Untranslated/metabolism , Transcription, Genetic , Animals , Cell Cycle Proteins/genetics , Cell Differentiation , Chromatin/genetics , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/genetics , HEK293 Cells , Humans , Mice , Muscle, Skeletal/cytology , MyoD Protein/biosynthesis , MyoD Protein/genetics , Myogenin/genetics , RNA, Untranslated/genetics , Cohesins
10.
Elife ; 62017 10 24.
Article in English | MEDLINE | ID: mdl-29063830

ABSTRACT

Over 80% of multiple-tested siRNAs and shRNAs targeting CD95 or CD95 ligand (CD95L) induce a form of cell death characterized by simultaneous activation of multiple cell death pathways preferentially killing transformed and cancer stem cells. We now show these si/shRNAs kill cancer cells through canonical RNAi by targeting the 3'UTR of critical survival genes in a unique form of off-target effect we call DISE (death induced by survival gene elimination). Drosha and Dicer-deficient cells, devoid of most miRNAs, are hypersensitive to DISE, suggesting cellular miRNAs protect cells from this form of cell death. By testing 4666 shRNAs derived from the CD95 and CD95L mRNA sequences and an unrelated control gene, Venus, we have identified many toxic sequences - most of them located in the open reading frame of CD95L. We propose that specific toxic RNAi-active sequences present in the genome can kill cancer cells.


Subject(s)
Antineoplastic Agents/metabolism , Cell Death , Fas Ligand Protein/antagonists & inhibitors , RNA, Small Interfering/metabolism , fas Receptor/antagonists & inhibitors , Cell Line, Tumor , Cell Survival , Humans , RNA Interference
11.
Methods ; 118-119: 41-49, 2017 04 15.
Article in English | MEDLINE | ID: mdl-27871973

ABSTRACT

The study of protein-RNA interactions is critical for our understanding of cellular processes and regulatory circuits controlled by RNA binding proteins (RBPs). Recent next generation sequencing-based approaches significantly promoted our understanding of RNA biology and its importance for cell function. We present a streamlined protocol for Photoactivatable-Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation (PAR-CLIP), a technique that allows for the characterization of RBP binding sites on target RNAs at nucleotide resolution and transcriptome-wide scale. PAR-CLIP involves irreversible UV-mediated crosslinking of RNAs labeled with photoreactive nucleosides to interacting proteins, followed by stringent purification steps and the conversion of crosslinked RNA into small RNA cDNA libraries compatible with next-generation sequencing. The defining hallmark of PAR-CLIP is a diagnostic mutation at the crosslinking site that is introduced into cDNA during the library preparation process. This feature allows for efficient computational removal of contaminating sequences derived from non-crosslinked fragments of abundant cellular RNAs. In the following, we present two different step-by-step procedures for PAR-CLIP, which differ in the small RNA cDNA library preparation procedure: (1) Standard library preparation involving gel size selections after each enzymatic manipulation, and (2) A modified PAR-CLIP procedure ("on-beads" PAR-CLIP), where most RNA manipulations including the necessary adapter ligation steps are performed on the immobilized RNP. This streamlined procedure reduces the protocol preparation time by three days compared to the standard workflow.


Subject(s)
Gene Library , High-Throughput Nucleotide Sequencing/methods , Immunoprecipitation/methods , RNA-Binding Proteins/genetics , RNA/chemistry , Sequence Analysis, RNA/methods , Thiouridine/metabolism , Antibodies/chemistry , Base Sequence , Binding Sites , Cell Line , Electrophoresis, Agar Gel/methods , Humans , Mutation , Phosphorus Radioisotopes , Protein Binding , RNA/genetics , RNA/metabolism , RNA-Binding Proteins/metabolism , Ribonucleases/chemistry , Software , Thiouridine/chemistry , Transcriptome , Ultraviolet Rays , Y-Box-Binding Protein 1/genetics , Y-Box-Binding Protein 1/metabolism
12.
PLoS Genet ; 12(8): e1006217, 2016 08.
Article in English | MEDLINE | ID: mdl-27500936

ABSTRACT

Ribosome biogenesis is essential for cell growth and proliferation and is commonly elevated in cancer. Accordingly, numerous oncogene and tumor suppressor signaling pathways target rRNA synthesis. In breast cancer, non-canonical Wnt signaling by Wnt5a has been reported to antagonize tumor growth. Here, we show that Wnt5a rapidly represses rDNA gene transcription in breast cancer cells and generates a chromatin state with reduced transcription of rDNA by RNA polymerase I (Pol I). These effects were specifically dependent on Dishevelled1 (DVL1), which accumulates in nucleolar organizer regions (NORs) and binds to rDNA regions of the chromosome. Upon DVL1 binding, the Pol I transcription activator and deacetylase Sirtuin 7 (SIRT7) releases from rDNA loci, concomitant with disassembly of Pol I transcription machinery at the rDNA promoter. These findings reveal that Wnt5a signals through DVL1 to suppress rRNA transcription. This provides a novel mechanism for how Wnt5a exerts tumor suppressive effects and why disruption of Wnt5a signaling enhances mammary tumor growth in vivo.


Subject(s)
Breast Neoplasms/genetics , Dishevelled Proteins/genetics , RNA Polymerase I/genetics , Transcription, Genetic , Wnt-5a Protein/genetics , Breast Neoplasms/pathology , Chromatin/genetics , DNA, Ribosomal/genetics , Dishevelled Proteins/metabolism , Gene Expression Regulation, Neoplastic , Humans , MCF-7 Cells , Nucleolus Organizer Region/genetics , Promoter Regions, Genetic , Protein Binding , RNA, Ribosomal/genetics , Sirtuins/genetics , Wnt Signaling Pathway/genetics , Wnt-5a Protein/metabolism
13.
FASEB J ; 30(8): 2860-73, 2016 08.
Article in English | MEDLINE | ID: mdl-27127100

ABSTRACT

Actin and nuclear myosin 1 (NM1) are regulators of transcription and chromatin organization. Using a genome-wide approach, we report here that ß-actin binds intergenic and genic regions across the mammalian genome, associated with both protein-coding and rRNA genes. Within the rDNA, the distribution of ß-actin correlated with NM1 and the other subunits of the B-WICH complex, WSTF and SNF2h. In ß-actin(-/-) mouse embryonic fibroblasts (MEFs), we found that rRNA synthesis levels decreased concomitantly with drops in RNA polymerase I (Pol I) and NM1 occupancies across the rRNA gene. Reintroduction of wild-type ß-actin, in contrast to mutated forms with polymerization defects, efficiently rescued rRNA synthesis underscoring the direct role for a polymerization-competent form of ß-actin in Pol I transcription. The rRNA synthesis defects in the ß-actin(-/-) MEFs are a consequence of epigenetic reprogramming with up-regulation of the repressive mark H3K4me1 (monomethylation of lys4 on histone H3) and enhanced chromatin compaction at promoter-proximal enhancer (T0 sequence), which disturb binding of the transcription factor TTF1. We propose a novel genome-wide mechanism where the polymerase-associated ß-actin synergizes with NM1 to coordinate permissive chromatin with Pol I transcription, cell growth, and proliferation.-Almuzzaini, B., Sarshad, A. A. , Rahmanto, A. S., Hansson, M. L., Von Euler, A., Sangfelt, O., Visa, N., Farrants, A.-K. Ö., Percipalle, P. In ß-actin knockouts, epigenetic reprogramming and rDNA transcription inactivation lead to growth and proliferation defects.


Subject(s)
Actins/metabolism , Cellular Reprogramming/physiology , DNA, Ribosomal/metabolism , Epigenesis, Genetic/physiology , Fibroblasts/metabolism , Gene Expression Regulation, Developmental/physiology , Actins/genetics , Animals , Cells, Cultured , Chromatin , DNA, Ribosomal/genetics , Mice , Myosin Type I/genetics , Myosin Type I/metabolism , Pol1 Transcription Initiation Complex Proteins/physiology , Transcription, Genetic/physiology
14.
BMC Biol ; 13: 35, 2015 Jun 05.
Article in English | MEDLINE | ID: mdl-26044184

ABSTRACT

BACKGROUND: Nuclear myosin 1c (NM1) is emerging as a regulator of transcription and chromatin organization. RESULTS: Using chromatin immunoprecipitation and deep sequencing (ChIP-Seq) in combination with molecular analyses, we investigated the global association of NM1 with the mammalian genome. Analysis of the ChIP-Seq data demonstrates that NM1 binds across the entire mammalian genome with occupancy peaks correlating with distributions of RNA Polymerase II (Pol II) and active epigenetic marks at class II gene promoters. In mouse embryonic fibroblasts subjected to RNAi mediated NM1 gene silencing, we show that NM1 synergizes with polymerase-associated actin to maintain active Pol II at the promoter. NM1 also co-localizes with the nucleosome remodeler SNF2h at class II promoters where they assemble together with WSTF as part of the B-WICH complex. A high resolution micrococcal nuclease (MNase) assay and quantitative real time PCR shows that this mechanism is required for local chromatin remodeling. Following B-WICH assembly, NM1 mediates physical recruitment of the histone acetyl transferase PCAF and the histone methyl transferase Set1/Ash2 to maintain and preserve H3K9acetylation and H3K4trimethylation for active transcription. CONCLUSIONS: We propose a novel genome-wide mechanism where myosin synergizes with Pol II-associated actin to link the polymerase machinery with permissive chromatin for transcription activation.


Subject(s)
Cell Nucleus/metabolism , Chromatin/metabolism , Myosin Type I/genetics , RNA Polymerase II/genetics , Transcriptional Activation/genetics , Animals , Chromatin Assembly and Disassembly , Fibroblasts/metabolism , HEK293 Cells , Humans , Mice , Myosin Type I/metabolism , Protein Binding , RNA Polymerase II/metabolism , Transcription, Genetic
15.
Int Rev Cell Mol Biol ; 311: 183-230, 2014.
Article in English | MEDLINE | ID: mdl-24952918

ABSTRACT

In the eukaryotic cell nucleus, actin and myosin are emerging as essential regulators of nuclear function. At gene level, they regulate chromatin and modulate RNA polymerase transcription, and at the RNA level, they are involved in the metabolism of ribonucleoprotein complexes. Furthermore, actin and myosin are involved in maintaining the structure of cell nucleus by mediating chromatin movement and by interacting with components of the nuclear lamina. This plethora of functions is now supported by evidence that nuclear actin polymerizes just like the cytoplasmic actin fraction. Based on these considerations, we now hypothesize that the nuclear myosin forms function as actin-based motors. In this chapter, our goal is to start from the knowledge acquired in the cytoplasmic field to explore how nuclear myosin functions in gene transcription. One of the pressing issues discussed here is whether nuclear myosin produces local tension or functions as transporters. Based on two current models reported in the literature, we discuss the topology of the actin-based nuclear myosin 1 motor and how it is believed to facilitate propulsion of the RNA polymerase machinery while maintaining chromatin that is compatible with transcription. These mechanisms will be placed in the context of cell cycle progression.


Subject(s)
DNA-Directed RNA Polymerases/metabolism , Myosins/metabolism , Actins/metabolism , Amino Acid Sequence , Animals , Cell Nucleus/metabolism , Enzyme Activation , Humans , Molecular Sequence Data , Multigene Family , Myosins/chemistry
16.
PLoS Genet ; 10(6): e1004390, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24901984

ABSTRACT

Nuclear myosin 1c (NM1) mediates RNA polymerase I (pol I) transcription activation and cell cycle progression by facilitating PCAF-mediated H3K9 acetylation, but the molecular mechanism by which NM1 is regulated remains unclear. Here, we report that at early G1 the glycogen synthase kinase (GSK) 3ß phosphorylates and stabilizes NM1, allowing for NM1 association with the chromatin. Genomic analysis by ChIP-Seq showed that this mechanism occurs on the rDNA as active GSK3ß selectively occupies the gene. ChIP assays and transmission electron microscopy in GSK3ß-/- mouse embryonic fibroblasts indicated that at G1 rRNA synthesis is suppressed due to decreased H3K9 acetylation leading to a chromatin state incompatible with transcription. We found that GSK3ß directly phosphorylates the endogenous NM1 on a single serine residue (Ser-1020) located within the NM1 C-terminus. In G1 this phosphorylation event stabilizes NM1 and prevents NM1 polyubiquitination by the E3 ligase UBR5 and proteasome-mediated degradation. We conclude that GSK3ß-mediated phosphorylation of NM1 is required for pol I transcription activation.


Subject(s)
G1 Phase/genetics , Glycogen Synthase Kinase 3/metabolism , Myosin Type I/metabolism , Transcriptional Activation/genetics , Ubiquitin-Protein Ligases/metabolism , Acetylation , Animals , Cell Line , Chromatin/genetics , DNA, Ribosomal/genetics , F-Box Proteins/genetics , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3 beta , HEK293 Cells , HeLa Cells , Histones/metabolism , Humans , Mice , Mice, Knockout , Phosphorylation , Proteolysis , RNA Interference , RNA Polymerase I/genetics , RNA, Small Interfering , Ubiquitin-Protein Ligases/genetics , Ubiquitination , p300-CBP Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...