Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
FEMS Microbiol Ecol ; 95(7)2019 07 01.
Article in English | MEDLINE | ID: mdl-31125051

ABSTRACT

The identification of the mechanisms by which marine dissolved organic matter (DOM) is produced and regenerated is critical to develop robust prediction of ocean carbon cycling. Polysaccharides represent one of the main constituents of marine DOM and their degradation is mainly attributed to polysaccharidases derived from bacteria. Here, we report that marine viruses can depolymerize the exopolysaccharides (EPS) excreted by their hosts using five bacteriophages that infect the notable EPS producer, Cobetia marina DSMZ 4741. Degradation monitorings as assessed by gel electrophoresis and size exclusion chromatography showed that four out of five phages carry structural enzymes that depolymerize purified solution of Cobetia marina EPS. The depolymerization patterns suggest that these putative polysaccharidases are constitutive, endo-acting and functionally diverse. Viral adsorption kinetics indicate that the presence of these enzymes provides a significant advantage for phages to adsorb onto their hosts upon intense EPS production conditions. The experimental demonstration that marine phages can display polysaccharidases active on bacterial EPS lead us to question whether viruses could also contribute to the degradation of marine DOM and modify its bioavailability. Considering the prominence of phages in the ocean, such studies may unveil an important microbial process that affects the marine carbon cycle.


Subject(s)
Bacteriophages/metabolism , Gammaproteobacteria/virology , Polysaccharides, Bacterial/metabolism , Bacteriophages/classification , Bacteriophages/enzymology , Gammaproteobacteria/metabolism , Seawater/microbiology , Seawater/virology
2.
Philos Trans A Math Phys Eng Sci ; 374(2081)2016 11 28.
Article in English | MEDLINE | ID: mdl-29035268

ABSTRACT

The importance of the atmospheric deposition of biologically essential trace elements, especially iron, is widely recognized, as are the difficulties of accurately quantifying the rates of trace element wet and dry deposition and their fractional solubility. This paper summarizes some of the recent progress in this field, particularly that driven by the GEOTRACES, and other, international research programmes. The utility and limitations of models used to estimate atmospheric deposition flux, for example, from the surface ocean distribution of tracers such as dissolved aluminium, are discussed and a relatively new technique for quantifying atmospheric deposition using the short-lived radionuclide beryllium-7 is highlighted. It is proposed that this field will advance more rapidly by using a multi-tracer approach, and that aerosol deposition models should be ground-truthed against observed aerosol concentration data. It is also important to improve our understanding of the mechanisms and rates that control the fractional solubility of these tracers. Aerosol provenance and chemistry (humidity, acidity and organic ligand characteristics) play important roles in governing tracer solubility. Many of these factors are likely to be influenced by changes in atmospheric composition in the future. Intercalibration exercises for aerosol chemistry and fractional solubility are an essential component of the GEOTRACES programme.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.

3.
Analyst ; 126(11): 2036-9, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11763088

ABSTRACT

Carbonic anhydrase (CA) is inactive unless associated with zinc, with possible substitution by cobalt. In this work, the complexation of zinc by CA was determined in sea-water using cathodic stripping voltammetry (CSV) with ligand competition. The zinc was found to be released from the CA over a period of 3 h when equilibrated with a competing complexing ligand and the complex was re-formed with the CA when zinc was added. A value of 8.90+/-0.27 was found for logK'ZnCA where K'ZnCA is the conditional stability constant for the complex of Zn2+ with CA in pH 8 sea-water. A value for the molecular weight of CA was calculated from its equivalent ligand concentration (in nM) obtained by titrations with zinc at various CA concentrations (1-4 mg l(-1)). The value found (34740 g mol(-1)) for the molecular weight is consistent with values found previously by other methods (29000-31000 g mol(-1)) confirming that the stoichiometry of the complex between zinc and CA is 1:1. This work confirms that the zinc-CA complex is reversible and that the interaction between zinc and CA can be determined using CSV with ligand competition.

SELECTION OF CITATIONS
SEARCH DETAIL
...