Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
Add more filters










Publication year range
1.
STAR Protoc ; 5(2): 103067, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38748883

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) provides high resolution of cell-to-cell variation in gene expression and offers insights into cell heterogeneity, differentiating dynamics, and disease mechanisms. However, technical challenges such as low capture rates and dropout events can introduce noise in data analysis. Here, we present a deep learning framework, called the dynamic batching adversarial autoencoder (DB-AAE), for denoising scRNA-seq datasets. First, we describe steps to set up the computing environment, training, and tuning. Then, we depict the visualization of the denoising results. For complete details on the use and execution of this protocol, please refer to Ko et al.1.

3.
Genes Dev ; 38(3-4): 151-167, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38453480

ABSTRACT

By satisfying bioenergetic demands, generating biomass, and providing metabolites serving as cofactors for chromatin modifiers, metabolism regulates adult stem cell biology. Here, we report that a branch of glycolysis, the serine biosynthesis pathway (SBP), is activated in regenerating muscle stem cells (MuSCs). Gene inactivation and metabolomics revealed that Psat1, one of the three SBP enzymes, controls MuSC activation and expansion of myogenic progenitors through production of the metabolite α-ketoglutarate (α-KG) and α-KG-generated glutamine. Psat1 ablation resulted in defective expansion of MuSCs and impaired regeneration. Psat1, α-KG, and glutamine were reduced in MuSCs of old mice. α-KG or glutamine re-established appropriate muscle regeneration of adult conditional Psat1 -/- mice and of old mice. These findings contribute insights into the metabolic role of Psat1 during muscle regeneration and suggest α-KG and glutamine as potential therapeutic interventions to ameliorate muscle regeneration during aging.


Subject(s)
Adult Stem Cells , Ketoglutaric Acids , Mice , Animals , Ketoglutaric Acids/metabolism , Glutamine/metabolism , Aging/physiology , Muscles , Muscle, Skeletal
4.
Trends Mol Med ; 30(3): 278-294, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38408879

ABSTRACT

Earlier evidence that targeting the balance between histone acetyltransferases (HATs) and deacetylases (HDACs), through exposure to HDAC inhibitors (HDACis), could enhance skeletal myogenesis, prompted interest in using HDACis to promote muscle regeneration. Further identification of constitutive HDAC activation in dystrophin-deficient muscles, caused by dysregulated nitric oxide (NO) signaling, provided the rationale for HDACi-based therapeutic interventions for Duchenne muscular dystrophy (DMD). In this review, we describe the molecular, preclinical, and clinical evidence supporting the efficacy of HDACis in countering disease progression by targeting pathogenic networks of gene expression in multiple muscle-resident cell types of patients with DMD. Given that givinostat is paving the way for HDACi-based interventions in DMD, next-generation HDACis with optimized therapeutic profiles and efficacy could be also explored for synergistic combinations with other therapeutic strategies.


Subject(s)
Muscular Dystrophy, Duchenne , Mice , Animals , Humans , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Muscle, Skeletal/metabolism , Mice, Inbred mdx , Dystrophin/metabolism , Signal Transduction
5.
iScience ; 27(3): 109027, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38361616

ABSTRACT

By providing high-resolution of cell-to-cell variation in gene expression, single-cell RNA sequencing (scRNA-seq) offers insights into cell heterogeneity, differentiating dynamics, and disease mechanisms. However, challenges such as low capture rates and dropout events can introduce noise in data analysis. Here, we propose a deep neural generative framework, the dynamic batching adversarial autoencoder (DB-AAE), which excels at denoising scRNA-seq datasets. DB-AAE directly captures optimal features from input data and enhances feature preservation, including cell type-specific gene expression patterns. Comprehensive evaluation on simulated and real datasets demonstrates that DB-AAE outperforms other methods in denoising accuracy and biological signal preservation. It also improves the accuracy of other algorithms in establishing pseudo-time inference. This study highlights DB-AAE's effectiveness and potential as a valuable tool for enhancing the quality and reliability of downstream analyses in scRNA-seq research.

6.
STAR Protoc ; 4(2): 102307, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37192048

ABSTRACT

Here, we present workflows for integrating independent transcriptomic and chromatin accessibility datasets and analyzing multiomics. First, we describe steps for integrating independent transcriptomic and chromatin accessibility measurements. Next, we detail multimodal analysis of transcriptomes and chromatin accessibility performed in the same sample. We demonstrate their use by analyzing datasets obtained from mouse embryonic stem cells induced to differentiate toward mesoderm-like, myogenic, or neurogenic phenotypes. For complete details on the use and execution of this protocol, please refer to Khateb et al.1.

7.
Dev Cell ; 58(12): 1052-1070.e10, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37105173

ABSTRACT

Organismal homeostasis and regeneration are predicated on committed stem cells that can reside for long periods in a mitotically dormant but reversible cell-cycle arrest state defined as quiescence. Premature escape from quiescence is detrimental, as it results in stem cell depletion, with consequent defective tissue homeostasis and regeneration. Here, we report that Polycomb Ezh1 confers quiescence to murine muscle stem cells (MuSCs) through a non-canonical function. In the absence of Ezh1, MuSCs spontaneously exit quiescence. Following repeated injuries, the MuSC pool is progressively depleted, resulting in failure to sustain proper muscle regeneration. Rather than regulating repressive histone H3K27 methylation, Ezh1 maintains gene expression of the Notch signaling pathway in MuSCs. Selective genetic reconstitution of the Notch signaling corrects stem cell number and re-establishes quiescence of Ezh1-/- MuSCs.


Subject(s)
Signal Transduction , Stem Cells , Mice , Animals , Cell Division , Cell Cycle Checkpoints , Muscles
8.
STAR Protoc ; 4(1): 102001, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36607809

ABSTRACT

Mouse embryonic stem cells (mESCs) can be directed to acquire cell-lineage-specific genetic programs and phenotypes by stepwise exposure to defined factors, allowing the development of in vitro models for studying disease and tissue generation. In this protocol, we describe the use of cultured mESCs to generate presomitic-like mesoderm cells undergoing further specification towards myogenic progenitors (MPs). Further, we describe here a procedure to obtain, dissect, and fluorescence-activated cell sorting (FACS)-isolate somitic cells from genetically labeled Pax7+/Cre; Rosa26YFP/+ embryos. For complete details on the use and execution of this protocol, please refer to Khateb et al.1.


Subject(s)
Flow Cytometry , Animals , Mice , Flow Cytometry/methods , Cell Lineage
9.
Cell ; 185(21): 3857-3876, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36240739

ABSTRACT

The discovery of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway arose from investigations of how cells respond to interferons (IFNs), revealing a paradigm in cell signaling conserved from slime molds to mammals. These discoveries revealed mechanisms underlying rapid gene expression mediated by a wide variety of extracellular polypeptides including cytokines, interleukins, and related factors. This knowledge has provided numerous insights into human disease, from immune deficiencies to cancer, and was rapidly translated to new drugs for autoimmune, allergic, and infectious diseases, including COVID-19. Despite these advances, major challenges and opportunities remain.


Subject(s)
COVID-19 , Janus Kinases , Animals , Cytokines/metabolism , Humans , Interferons/metabolism , Janus Kinases/metabolism , Mammals/metabolism , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , Signal Transduction
10.
Cell Rep ; 40(7): 111219, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35977485

ABSTRACT

Embryonic stem cells (ESCs) can adopt lineage-specific gene-expression programs by stepwise exposure to defined factors, resulting in the generation of functional cell types. Bulk and single-cell-based assays were employed to catalog gene expression, histone modifications, chromatin conformation, and accessibility transitions in ESC populations and individual cells acquiring a presomitic mesoderm fate and undergoing further specification toward myogenic and neurogenic lineages. These assays identified cis-regulatory regions and transcription factors presiding over gene-expression programs occurring at defined ESC transitions and revealed the presence of heterogeneous cell populations within discrete ESC developmental stages. The datasets were employed to identify previously unappreciated genomic elements directing the initial activation of Pax7 and myogenic and neurogenic gene-expression programs. This study provides a resource for the discovery of genomic and transcriptional features of pluripotent, mesoderm-induced ESCs and ESC-derived cell lineages.


Subject(s)
Embryonic Stem Cells , Transcriptome , Cell Differentiation/genetics , Embryonic Stem Cells/metabolism , Gene Expression Regulation, Developmental , Mesoderm/metabolism , Regulatory Sequences, Nucleic Acid
11.
J Vis Exp ; (184)2022 06 08.
Article in English | MEDLINE | ID: mdl-35758697

ABSTRACT

Fibro-adipogenic progenitor cells (FAPs) are a population of skeletal muscle-resident mesenchymal stromal cells (MSCs) capable of differentiating along fibrogenic, adipogenic, osteogenic, or chondrogenic lineage. Together with muscle stem cells (MuSCs), FAPs play a critical role in muscle homeostasis, repair, and regeneration, while actively maintaining and remodeling the extracellular matrix (ECM). In pathological conditions, such as chronic damage and muscular dystrophies, FAPs undergo aberrant activation and differentiate into collagen-producing fibroblasts and adipocytes, leading to fibrosis and intramuscular fatty infiltration. Thus, FAPs play a dual role in muscle regeneration, either by sustaining MuSC turnover and promoting tissue repair or contributing to fibrotic scar formation and ectopic fat infiltrates, which compromise the integrity and function of the skeletal muscle tissue. A proper purification of FAPs and MuSCs is a prerequisite for understanding the biological role of these cells in physiological as well as in pathological conditions. Here, we describe a standardized method for the simultaneous isolation of FAPs and MuSCs from limb muscles of adult mice using fluorescence-activated cell sorting (FACS). The protocol describes in detail the mechanical and enzymatic dissociation of mononucleated cells from whole limb muscles and injured tibialis anterior (TA) muscles. FAPs and MuSCs are subsequently isolated using a semi-automated cell sorter to obtain pure cell populations. We additionally describe an optimized method for culturing quiescent and activated FAPs and MuSCs, either alone or in coculture conditions.


Subject(s)
Adipogenesis , Stem Cells , Animals , Cell Differentiation/physiology , Fibrosis , Flow Cytometry/methods , Mice , Muscle, Skeletal
12.
Blood Adv ; 5(23): 4949-4962, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34492681

ABSTRACT

RUNX1 is essential for the generation of hematopoietic stem cells (HSCs). Runx1-null mouse embryos lack definitive hematopoiesis and die in mid-gestation. However, although zebrafish embryos with a runx1 W84X mutation have defects in early definitive hematopoiesis, some runx1W84X/W84X embryos can develop to fertile adults with blood cells of multilineages, raising the possibility that HSCs can emerge without RUNX1. Here, using 3 new zebrafish runx1-/- lines, we uncovered the compensatory mechanism for runx1-independent hematopoiesis. We show that, in the absence of a functional runx1, a cd41-green fluorescent protein (GFP)+ population of hematopoietic precursors still emerge from the hemogenic endothelium and can colonize the hematopoietic tissues of the mutant embryos. Single-cell RNA sequencing of the cd41-GFP+ cells identified a set of runx1-/--specific signature genes during hematopoiesis. Significantly, gata2b, which normally acts upstream of runx1 for the generation of HSCs, was increased in the cd41-GFP+ cells in runx1-/- embryos. Interestingly, genetic inactivation of both gata2b and its paralog gata2a did not affect hematopoiesis. However, knocking out runx1 and any 3 of the 4 alleles of gata2a and gata2b abolished definitive hematopoiesis. Gata2 expression was also upregulated in hematopoietic cells in Runx1-/- mice, suggesting the compensatory mechanism is conserved. Our findings indicate that RUNX1 and GATA2 serve redundant roles for HSC production, acting as each other's safeguard.


Subject(s)
Core Binding Factor Alpha 2 Subunit/metabolism , GATA2 Transcription Factor/metabolism , Hemangioblasts , Zebrafish Proteins/metabolism , Animals , Core Binding Factor Alpha 2 Subunit/genetics , GATA2 Transcription Factor/genetics , Hematopoiesis/genetics , Hematopoietic Stem Cells , Mice , Zebrafish , Zebrafish Proteins/genetics
13.
STAR Protoc ; 2(2): 100451, 2021 06 18.
Article in English | MEDLINE | ID: mdl-33937872

ABSTRACT

It remains challenging to generate reproducible, high-quality cDNA libraries from RNA derived from rare cell populations. Here, we describe a protocol for high-throughput RNA-seq library preparation, including isolation of 200 skeletal muscle stem cells from mouse tibialis anterior muscle by fluorescence-activated cell sorting and cDNA preparation. We also describe RNA extraction and cDNA preparation from differentiating mouse embryonic stem cells. For complete details on the use and execution of this protocol, please refer to Juan et al. (2016) and Garcia-Prat et al. (2016).


Subject(s)
Flow Cytometry , Gene Library , Mouse Embryonic Stem Cells/metabolism , Myoblasts, Skeletal/metabolism , RNA-Seq , Animals , Mice
14.
Genes Dev ; 35(7-8): 427-432, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33861718

ABSTRACT

How transcriptional enhancers function to activate distant genes has been the subject of lively investigation for decades. "Enhancers, gene regulation, and genome organization" was the subject of a virtual meeting held November 16-17, 2020, under sponsorship of the National Cancer Institute (NCI), the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), and the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) at the National Institutes of Health (NIH). The goal of the meeting was to advance an understanding of how transcriptional enhancers function within the framework of the folded genome as we understand it, emphasizing how levels of organization may influence each other and may contribute to the spatiotemporal specification of transcription. Here we focus on broad questions about enhancer function that remain unsettled and that we anticipate will be central to work in this field going forward. Perforce, we cover contributions of only some speakers and apologize to other contributors in vital areas that we could not include because of space constraints.


Subject(s)
Enhancer Elements, Genetic/genetics , Gene Expression Regulation , Genome/genetics , Humans , National Institutes of Health (U.S.) , United States
15.
Nat Commun ; 12(1): 892, 2021 02 09.
Article in English | MEDLINE | ID: mdl-33563972

ABSTRACT

Given their copy number differences and unique modes of inheritance, the evolved gene content and expression of sex chromosomes is unusual. In many organisms the X and Y chromosomes are inactivated in spermatocytes, possibly as a defense mechanism against insertions into unpaired chromatin. In addition to current sex chromosomes, Drosophila has a small gene-poor X-chromosome relic (4th) that re-acquired autosomal status. Here we use single cell RNA-Seq on fly larvae to demonstrate that the single X and pair of 4th chromosomes are specifically inactivated in primary spermatocytes, based on measuring all genes or a set of broadly expressed genes in testis we identified. In contrast, genes on the single Y chromosome become maximally active in primary spermatocytes. Reduced X transcript levels are due to failed activation of RNA-Polymerase-II by phosphorylation of Serine 2 and 5.


Subject(s)
Drosophila/genetics , Sex Chromosomes/genetics , Spermatocytes/metabolism , Animals , Drosophila/growth & development , Gene Expression Regulation , Genes, X-Linked/genetics , Genes, Y-Linked/genetics , Larva/genetics , Larva/growth & development , Male , Organ Specificity , RNA Polymerase II/metabolism , Sex Chromosomes/metabolism , Spermatogenesis/genetics , Testis/cytology , Testis/metabolism , Transcription, Genetic
16.
Immunity ; 53(4): 745-758.e4, 2020 10 13.
Article in English | MEDLINE | ID: mdl-33010223

ABSTRACT

Innate immune responses rely on rapid and precise gene regulation mediated by accessibility of regulatory regions to transcription factors (TFs). In natural killer (NK) cells and other innate lymphoid cells, competent enhancers are primed during lineage acquisition, and formation of de novo enhancers characterizes the acquisition of innate memory in activated NK cells and macrophages. Here, we investigated how primed and de novo enhancers coordinate to facilitate high-magnitude gene induction during acute activation. Epigenomic and transcriptomic analyses of regions near highly induced genes (HIGs) in NK cells both in vitro and in a model of Toxoplasma gondii infection revealed de novo chromatin accessibility and enhancer remodeling controlled by signal-regulated TFs STATs. Acute NK cell activation redeployed the lineage-determining TF T-bet to de novo enhancers, independent of DNA-sequence-specific motif recognition. Thus, acute stimulation reshapes enhancer function through the combinatorial usage and repurposing of both lineage-determining and signal-regulated TFs to ensure an effective response.


Subject(s)
Enhancer Elements, Genetic/genetics , Enhancer Elements, Genetic/immunology , Killer Cells, Natural/immunology , Transcription Factors/genetics , Transcription Factors/immunology , Animals , Chromatin/genetics , Chromatin/immunology , Female , Gene Expression/genetics , Gene Expression/immunology , Gene Expression Profiling/methods , Gene Expression Regulation/genetics , Gene Expression Regulation/immunology , Immunity, Innate/genetics , Immunity, Innate/immunology , Macrophages/immunology , Mice , Mice, Inbred C57BL , Toxoplasma/immunology , Toxoplasmosis/genetics , Toxoplasmosis/immunology
17.
Nat Cell Biol ; 22(11): 1307-1318, 2020 11.
Article in English | MEDLINE | ID: mdl-33106654

ABSTRACT

Tissue regeneration declines with ageing but little is known about whether this arises from changes in stem-cell heterogeneity. Here, in homeostatic skeletal muscle, we identify two quiescent stem-cell states distinguished by relative CD34 expression: CD34High, with stemness properties (genuine state), and CD34Low, committed to myogenic differentiation (primed state). The genuine-quiescent state is unexpectedly preserved into later life, succumbing only in extreme old age due to the acquisition of primed-state traits. Niche-derived IGF1-dependent Akt activation debilitates the genuine stem-cell state by imposing primed-state features via FoxO inhibition. Interventions to neutralize Akt and promote FoxO activity drive a primed-to-genuine state conversion, whereas FoxO inactivation deteriorates the genuine state at a young age, causing regenerative failure of muscle, as occurs in geriatric mice. These findings reveal transcriptional determinants of stem-cell heterogeneity that resist ageing more than previously anticipated and are only lost in extreme old age, with implications for the repair of geriatric muscle.


Subject(s)
Antigens, CD34/metabolism , Cell Proliferation , Cell Self Renewal , Cellular Senescence , Forkhead Transcription Factors/metabolism , Muscle, Skeletal/metabolism , Regeneration , Satellite Cells, Skeletal Muscle/metabolism , Age Factors , Animals , Cardiotoxins/toxicity , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Self Renewal/drug effects , Cell Self Renewal/genetics , Cells, Cultured , Cellular Senescence/drug effects , Cellular Senescence/genetics , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O3/genetics , Forkhead Box Protein O3/metabolism , Forkhead Transcription Factors/genetics , Gene Expression Regulation , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, SCID , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Muscle, Skeletal/transplantation , Phenotype , Proto-Oncogene Proteins c-akt/metabolism , Regeneration/drug effects , Regeneration/genetics , Satellite Cells, Skeletal Muscle/drug effects , Satellite Cells, Skeletal Muscle/pathology , Satellite Cells, Skeletal Muscle/transplantation , Signal Transduction , Stem Cell Niche
18.
Nat Struct Mol Biol ; 27(6): 521-528, 2020 06.
Article in English | MEDLINE | ID: mdl-32514177

ABSTRACT

Noncoding RNAs (ncRNAs) direct a remarkable number of diverse functions in development and disease through their regulation of transcription, RNA processing and translation. Leading the charge in the RNA revolution is a class of ncRNAs that are synthesized at active enhancers, called enhancer RNAs (eRNAs). Here, we review recent insights into the biogenesis of eRNAs and the mechanisms underlying their multifaceted functions and consider how these findings could inform future investigations into enhancer transcription and eRNA function.


Subject(s)
Enhancer Elements, Genetic , Epigenome , RNA, Untranslated/genetics , Animals , Chromatin/genetics , Gene Expression Regulation , Humans , Neoplasms/genetics , RNA, Untranslated/chemistry , Transcription, Genetic
20.
Nat Commun ; 10(1): 2157, 2019 05 14.
Article in English | MEDLINE | ID: mdl-31089138

ABSTRACT

T cell senescence and exhaustion are major barriers to successful cancer immunotherapy. Here we show that miR-155 increases CD8+ T cell antitumor function by restraining T cell senescence and functional exhaustion through epigenetic silencing of drivers of terminal differentiation. miR-155 enhances Polycomb repressor complex 2 (PRC2) activity indirectly by promoting the expression of the PRC2-associated factor Phf19 through downregulation of the Akt inhibitor, Ship1. Phf19 orchestrates a transcriptional program extensively shared with miR-155 to restrain T cell senescence and sustain CD8+ T cell antitumor responses. These effects rely on Phf19 histone-binding capacity, which is critical for the recruitment of PRC2 to the target chromatin. These findings establish the miR-155-Phf19-PRC2 as a pivotal axis regulating CD8+ T cell differentiation, thereby paving new ways for potentiating cancer immunotherapy through epigenetic reprogramming of CD8+ T cell fate.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Melanoma, Experimental/immunology , MicroRNAs/metabolism , Skin Neoplasms/immunology , Transcription Factors/metabolism , Adoptive Transfer/methods , Animals , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/transplantation , Cell Differentiation/genetics , Cell Differentiation/immunology , Cellular Senescence/genetics , Cellular Senescence/immunology , Epigenesis, Genetic/immunology , Female , Gene Expression Regulation, Neoplastic , Humans , Melanoma, Experimental/genetics , Melanoma, Experimental/therapy , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism , Polycomb Repressive Complex 2/immunology , Polycomb Repressive Complex 2/metabolism , Skin Neoplasms/genetics , Skin Neoplasms/therapy , Transcription Factors/genetics , Transcription Factors/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...