Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Genet Eng Biotechnol ; 22(2): 100373, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38797547

ABSTRACT

BACKGROUND: Wheat stripe mosaic virus (WhSMV) is a significant wheat pathogen that causes substantial yield losses in Brazil and other countries. Although several detection methods are available, reliable and efficient tools for on-site WhSMV detection are currently lacking. In this study, a Loop-Mediated Isothermal Amplification (LAMP) method was developed for rapid and reliable field detection of WhSMV. We designed WhSMV-specific primers for the LAMP assay and optimized reaction conditions for increased sensitivity and specificity using infected plant samples. RESULTS: We have developed a diagnostic method utilizing the Loop-Mediated Isothermal Amplification (LAMP) technique capable of rapidly and reliably detecting WhSMV. The LAMP assay has been optimized to enhance sensitivity, specificity, and cost-effectiveness. CONCLUSION: The LAMP assay described here represents a valuable tool for early WhSMV detection, serving to mitigate the adverse economic and social impacts of this viral pathogen. By enabling swift and accurate identification, this assay can significantly improve the sustainability of cereal production systems, safeguarding crop yields against the detrimental effects of WhSMV.

2.
Plant Dis ; 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38069457

ABSTRACT

Brazil is the largest producer of soybean [Glycine max (L.) Merrill], cultivated in diverse environments and systems. This scenario can contribute to emergence of new diseases or increase the severity of secondary diseases. In March 2023, elliptical to circular, brownish lesions, 5.2-6.1 cm length and 1.1-1.5 cm width, with salmon-colored masses of conidia in the center of the lesions, were observed on the stems of soybean cultivar 'CZ 16B17 IPRO', in the municipality of Campos Novos, Santa Catarina, Brazil (27º25'19''S and 51º14'14''05W). The presence of 210-355 µm length and 210-232 µm width acervuli was rare, with arrows larger than the mass of conidia (Figure S1). Fragments of the infected tissues were cut, disinfected and placed in Petri dishes containing Potato Dextrose Agar (PDA) or V8-agar medium and maintained at 23 ± 2ºC and a photoperiod of 12 h dark-light cycle. After 13 days, the development of grayish-white colonies was observed on both culture media, with the formation of a mass of septate hyaline, oblong, cylindrical conidia, 13.3-15.3 µm length and 2.9-3.5 µm width, with obtuse ends. One pure monosporic isolate was selected, isolate CF1. The presence of sexual structures was observed on PDA after 13 days and in V8 after 15-20 days. Perithecia were dark brown and globose, either immersed in the culture medium or on the surface between the mycelia. Inside of perithecia, unitunicate, clavate, and cymbiform asci, 39.1-61.0 µm length and 9.6-11.7 µm width were observed, containing eight spindle-shaped and slightly curved ascospores with rounded tips 13.8-18.3 µm length and 3.0-4.2 µm width (Figure S1). Pathogenicity tests were performed on young soybean plants at V1 phenological growth stage in four repetitions. PDA disks, 7mm in diameter, with growth mycelium were placed on stems while using uninfected PDA disks as a control. Plants were incubated in a chamber at 25 ± 2°C and 90% relative humidity. Anthracnose lesions were observed only on the stems of the inoculated plants. The same pattern of symptoms was observed on the stems, and the fungus were reisolated on PDA. The colony and morphological characteristics were identical to the previously isolated fungus. For molecular characterization, the growth mycelia were collected, macerated in liquid nitrogen, and DNA was extracted using the method Doyle and Doyle (1990) with CTAB. End-point PCR was performed using the GoTaq® Flexi DNA Polymerase (Promega, USA) and the primers, ITS-1F/ITS-4, T1/Bt2b, CL1C/CL2C, GDF/GDR, and SODglo2-F/SODglo2-R (Weir et al. 2012) for the amplification of internal transcribed spacer (ITS), ß-tubulin (TUB2), calmodulin (CAL), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and superoxide dismutase (SOD), respectively. Amplified fragments were sequenced and compared with the available sequences in the Genbank (www.ncbi.nlm.nih.gov/genbank/). The sequences of all five-genes (Accession numbers OR883777, OR891749, OR891750, OR891751 and OR891752, respectively) of the isolate CF1 characterized in this study showed 99% nucleotide identities whith the stand isolate ICMP 18581 of Colletotrichum fructicola. A phylogenetic tree was constructed in MEGA X (Kumar et al. 2021), containing the amplified and concatenated sequences and representative species from the Colletotrichum gloeosporioides complex. The isolate grouped only with C. fructicola clade, confirming the identity of the fungus (Figure S2). To our knowledge, this is the first study reporting the infection of C. fructicola in soybeans in Brazil, which has already been reported in China (Xu et al. 2023).

3.
Plant Dis ; 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33754860

ABSTRACT

The hop (Humulus lupulus L.) is a dioecious perennial climbing plant grown commercially worldwide. Wild hops are widely distributed throughout the Northern Hemisphere, Europe, Asia, and North America (Neve, 1991). In the Southern Hemisphere, some of the leading hop-producing countries include South Africa, Australia, and New Zealand. Brazil began hop production less than 5 years ago. In January 2019, amphigenous white powdery circular fungal colonies were observed on the leaves and stems of hop plants (cultivar Chinook) within a 900m2 hop garden in Lages municipality, Santa Catarina State, southern Brazil. The incidence of the disease was present on almost 100 per cent of "Chinook" cultivar plants and diseased foliage was collected to identify the pathogen and used to inoculate healthy plants. Hop powdery mildew lesions with hyaline and septate mycelium with chains of unicellular conidia (n =100) hyaline, barrel-shaped, mean of length/width ± standard deviation 25-27 × 13-18 µm ± 0.980, with fibrosin bodies, and conidiophores erect with cylindrical foot cells, were visible within 10 days. The causal agent was identified as Podosphaera macularis (Wallr.:Fr.) Lind (synonym S. humuli (DC.) Burrill) on the basis of conidial shape, size and host range (Royle 1978; Braun 1987; Mahaffee et al., 2009), complemented with the present molecular analysis. Chasmothecia have not been observed in the field to date. A conidial suspension of 200 ml at concentration of 1.4 x 105 was mixed with 5ul of Tween® 20 for the pathogenicity assay. Ten plants of 9-month-old of hop "Chinook" cultivar, were inoculated with 5 ml of the conidial suspension using a manual spray. The control plot was only sprayed with water. The inoculated plants were maintained at 22ºC ± 1ºC with a 12-hour photoperiod and 65% relative humidity. White mycelia were visible first on the adaxial leaf surfaces of the inoculated younger leaves after 10 days and the disease severity reached between 2 to 5%. No symptoms were observed at the control plot. P. macularis infected most aerial plant tissues of the inoculated plants and caused approximately 50% of cones losses. P. macularis conidia were collected from the infected leaf tissue with a sterile soft camel-hair brush and DNA was extracted using a Wizard Genomic DNA extraction kit. The primers ITS1/ITS4 (White et al., 1990) were used to amplified and sequenced a fragment of the ITS region. PCR products were subjected to Sanger Sequencing to confirm sample species. The resulting 522-bp sequence was deposited into GenBank (accession n°. MN630490). BLASTn showed a 99.81% sequence identity with the CT1 isolate of P. macularis from H. lupulus (MH687414). The presence and identification of P. macularis in hop production regions is a new challenge to growers in Brazil. Research related to the knowledge of the disease cycle, epidemiology, and control strategies for the integrated management should be conducted, as there are no registered fungicides for powdery mildew on hop in Brazil. To our knowledge, this is the first report of P. macularis in Brazil, as well as in South America. References Braun, U. (1987) A Monograph of the Erysiphales (Powdery Mildews). J. Cramer, Berlin, German Democratic Republic. p 113. Mahaffee, W. F., Pethybridge, S.J., Gent, D.H (2009) Compendium of hop diseases and pests. The American Phytopathological Society Press, Saint Paul, Minnesota. Neve R. A (1991). Hops. Chapman and Hall: London. Royle, D. J (1978). Powdery mildew of the hop. Pages 381-409 in: The Powdery Mildews. D. M. Spencer, ed. Academic Press, New York. White, T. J., Bruns, T., Lee, S., and Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. pp. 315-322 in: PCR Protocols: A Guide to Methods and Applications. M. Innis, D. Gelfand, J. Sninsky, and T. White, eds. Academic Press, San Diego.

SELECTION OF CITATIONS
SEARCH DETAIL