Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Bioanalysis ; 16(9): 307-364, 2024.
Article in English | MEDLINE | ID: mdl-38913185

ABSTRACT

The 17th Workshop on Recent Issues in Bioanalysis (17th WRIB) took place in Orlando, FL, USA on June 19-23, 2023. Over 1000 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 17th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week to allow an exhaustive and thorough coverage of all major issues in bioanalysis of biomarkers, immunogenicity, gene therapy, cell therapy and vaccines.Moreover, in-depth workshops on "EU IVDR 2017/746 Implementation and impact for the Global Biomarker Community: How to Comply with this NEW Regulation" and on "US FDA/OSIS Remote Regulatory Assessments (RRAs)" were the special features of the 17th edition.As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues.This 2023 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2023 edition of this comprehensive White Paper has been divided into three parts for editorial reasons.This publication covers the recommendations on Mass Spectrometry Assays, Regulated Bioanalysis/BMV (Part 1A) and Regulatory Inputs (Part 1B). Part 2 (Biomarkers, IVD/CDx, LBA and Cell-Based Assays) and Part 3 (Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity) are published in volume 16 of Bioanalysis, issues 7 and 8 (2024), respectively.


Subject(s)
Proteomics , Humans , Proteomics/methods , Mass Spectrometry/methods , Biomarkers/analysis , United States , Cell- and Tissue-Based Therapy , Genetic Therapy , Chromatography/methods , White
2.
Rapid Commun Mass Spectrom ; 38(15): e9774, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38812280

ABSTRACT

RATIONALE: A common strategy for antibody-drug conjugate (ADC) quantitation from in vivo study samples involves measurement of total antibody, conjugated ADC, and free payload concentrations using multiple reaction monitoring (MRM) mass spectrometry. This not only provides a limited picture of biotransformation but can also involve lengthy method development. Quantitation of ADCs directly at the intact protein level in native conditions using high-resolution mass spectrometers presents the advantage of measuring exposure readout as well as monitoring the change in average drug-to-antibody ratio (DAR) and in vivo stability of new linker payloads with minimal method development. Furthermore, site-specific cysteine-conjugated ADCs often rely on non-covalent association to retain their quaternary structure, which highlights the unique capabilities of native mass spectrometry (nMS) for intact ADC quantitation. METHODS: We developed an intact quantitation workflow involving three stages: automated affinity purification, nMS analysis, and data processing in batch fashion. The sample preparation method was modified to include only volatile ion-pairing reagents in the buffer systems. A capillary size-exclusion chromatography (SEC) column was coupled to a quadrupole time-of-flight high-resolution mass spectrometer for high-throughput nMS analysis. Samples from two mouse pharmacokinetic (PK) studies were analyzed using both intact quantitation workflow and the conventional MRM-based approach. RESULTS: A linear dynamic range of 5-100 µg/mL was achieved using 20 µL of serum sample volume. The results of mouse in vivo PK measurement using the intact quantitation workflow and the MRM-based approach were compared, revealing excellent method agreement. CONCLUSIONS: We demonstrated the feasibility of utilizing nMS for the quantitation of ADCs at the intact protein level in preclinical PK studies. Our results indicate that this intact quantitation workflow can serve as an alternative generic method for high-throughput analysis, enabling an in-depth understanding of ADC stability and safety in vivo.


Subject(s)
Cysteine , Immunoconjugates , Mass Spectrometry , Immunoconjugates/chemistry , Immunoconjugates/pharmacokinetics , Immunoconjugates/blood , Immunoconjugates/analysis , Cysteine/chemistry , Cysteine/blood , Animals , Mice , Mass Spectrometry/methods , Chromatography, Gel/methods
3.
Drug Metab Dispos ; 52(2): 135-142, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38050039

ABSTRACT

Antibody-drug conjugates (ADC) have gained momentum for treatment of cancers, with 14 ADCs currently approved for commercial use worldwide. Calicheamicin is one of the payloads contributing to this trend, being used for both gemtuzumab ozogamicin (GO; trade name: Mylotarg) and inotuzumab ozogamicin (IO; trade name: Besponsa). Here we discuss the catabolic pathway and metabolism of ABBV-011, a novel SEZ6-targeted, calicheamicin-based ADC being investigated for the treatment of small cell lung cancer (SCLC). Specifically, our investigation has found that disulfide bond cleavage in N-acetyl-γ-calicheamicin payload is a key liability that potentially impacts overall stability of the ADC. To our knowledge, there have been no reported observations of disulfide bond cleavage of calicheamicin ADCs. ABBV-011 utilizes a novel linker structure, leading to a distinct metabolic profile when compared with GO and IO. Despite this difference in linker structures, we propose that this liability may also be relevant for other calicheamicin ADCs. Multiple data sets supporting our investigation were acquired as part of the preclinical development of ABBV-011 and demonstrate the utility of in vitro experiments to characterize potential ADC candidates prior to clinical trials. SIGNIFICANCE STATEMENT: Several in vitro and in vivo stability studies of ABBV-011, a calicheamicin-based antibody-drug conjugate (ADC), identified circulating metabolites and catabolites and suggested that disulfide cleavage may be a key liability for the conjugated linker-payload. These observations may be relevant to other disulfide-linked ADCs such as gemtuzumab ozogamicin (Mylotarg) and inotuzumab ozogamicin (Besponsa), both of which have reported similar half-lives that possibly indicate instability.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Immunoconjugates/chemistry , Inotuzumab Ozogamicin , Gemtuzumab , Calicheamicins , Antineoplastic Agents/therapeutic use , Disulfides
4.
J Med Chem ; 66(17): 12544-12558, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37656698

ABSTRACT

Stable attachment of drug-linkers to the antibody is a critical requirement, and for maleimide conjugation to cysteine, it is achieved by ring hydrolysis of the succinimide ring. During ADC profiling in our in-house property screening funnel, we discovered that the succinimide ring open form is in equilibrium with the ring closed succinimide. Bromoacetamide (BrAc) was identified as the optimal replacement, as it affords stable attachment of the drug-linker to the antibody while completely removing the undesired ring open-closed equilibrium. Additionally, BrAc also offers multiple benefits over maleimide, especially with respect to homogeneity of the ADC structure. In combination with a short, hydrophilic linker and phosphate prodrug on the payload, this afforded a stable ADC (ABBV-154) with the desired properties to enable long-term stability to facilitate subcutaneous self-administration.


Subject(s)
Immunoconjugates , Prodrugs , Receptors, Glucocorticoid , Tumor Necrosis Factor Inhibitors , Antibodies , Prodrugs/pharmacology , Glucocorticoids , Maleimides , Immunoconjugates/pharmacology
5.
Bioanalysis ; 15(16): 955-1016, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37650500

ABSTRACT

The 16th Workshop on Recent Issues in Bioanalysis (16th WRIB) took place in Atlanta, GA, USA on September 26-30, 2022. Over 1000 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 16th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on the ICH M10 BMV final guideline (focused on this guideline training, interpretation, adoption and transition); mass spectrometry innovation (focused on novel technologies, novel modalities, and novel challenges); and flow cytometry bioanalysis (rising of the 3rd most common/important technology in bioanalytical labs) were the special features of the 16th edition. As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues. This 2022 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2022 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 1A) covers the recommendations on Mass Spectrometry and ICH M10. Part 1B covers the Regulatory Agencies' Inputs on Bioanalysis, Biomarkers, Immunogenicity, Gene & Cell Therapy and Vaccine. Part 2 (LBA, Biomarkers/CDx and Cytometry) and Part 3 (Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity) are published in volume 15 of Bioanalysis, issues 15 and 14 (2023), respectively.


Subject(s)
Chromatography , Vaccines , Biomarkers , Cell- and Tissue-Based Therapy , Mass Spectrometry , Oligonucleotides , Technology
6.
J Med Chem ; 66(13): 9161-9173, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37379257

ABSTRACT

To facilitate subcutaneous dosing, biotherapeutics need to exhibit properties that enable high-concentration formulation and long-term stability in the formulation buffer. For antibody-drug conjugates (ADCs), the introduction of drug-linkers can lead to increased hydrophobicity and higher levels of aggregation, which are both detrimental to the properties required for subcutaneous dosing. Herein we show how the physicochemical properties of ADCs could be controlled through the drug-linker chemistry in combination with prodrug chemistry of the payload, and how optimization of these combinations could afford ADCs with significantly improved solution stability. Key to achieving this optimization is the use of an accelerated stress test performed in a minimal formulation buffer.


Subject(s)
Immunoconjugates , Immunoconjugates/chemistry , Hydrophobic and Hydrophilic Interactions
7.
Bioanalysis ; 15(3): 133-148, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36891956

ABSTRACT

Over the past two decades, we have seen an increase in the complexity and diversity of biotherapeutic modalities pursued by biopharmaceutical companies. These biologics are multifaceted and susceptible to post-translational modifications and in vivo biotransformation that could impose challenges for bioanalysis. It is vital to characterize the functionality, stability and biotransformation products of these molecules to enable screening, identify potential liabilities at an early stage and devise a bioanalytical strategy. This article highlights our perspective on characterization and bioanalysis of biologics using hybrid LC-MS in our global nonregulated bioanalytical laboratories. AbbVie's suite of versatile, stage-appropriate characterization assays and quantitative bioanalytical approaches are discussed, along with guidance on their utility in answering project-specific questions to aid in decision-making.


Subject(s)
Biological Products , Laboratories , Chromatography, Liquid , Mass Spectrometry , Biotransformation
8.
Clin Pharmacol Ther ; 113(6): 1185-1198, 2023 06.
Article in English | MEDLINE | ID: mdl-36477720

ABSTRACT

Typically, therapeutic proteins (TPs) have a low risk for eliciting meaningful drug interactions (DIs). However, there are select instances where TP drug interactions (TP-DIs) of clinical concern can occur. This white paper discusses the various types of TP-DIs involving mechanisms such as changes in disease state, target-mediated drug disposition, neonatal Fc receptor (FcRn), or antidrug antibodies formation. The nature of TP drug interaction being investigated should determine whether the examination is conducted as a standalone TP-DI study in healthy participants, in patients, or assessed via population pharmacokinetic analysis. DIs involving antibody-drug conjugates are discussed briefly, but the primary focus here will be DIs involving cytokine modulation. Cytokine modulation can occur directly by certain TPs, or indirectly due to moderate to severe inflammation, infection, or injury. Disease states that have been shown to result in indirect disease-DIs that are clinically meaningful have been listed (i.e., typically a twofold change in the systemic exposure of a coadministered sensitive cytochrome P450 substrate drug). Type of disease and severity of inflammation should be the primary drivers for risk assessment for disease-DIs. While more clinical inflammatory marker data needs to be collected, the use of two or more clinical inflammatory markers (such as C-reactive protein, albumin, or interleukin 6) may help broadly categorize whether the predicted magnitude of inflammatory disease-DI risk is negligible, weak, or moderate to strong. Based on current knowledge, clinical DI studies are not necessary for all TPs, and should no longer be conducted in certain disease patient populations such as psoriasis, which do not have sufficient systemic inflammation to cause a meaningful indirect disease-DI.


Subject(s)
Cytokines , Psoriasis , Infant, Newborn , Humans , Drug Interactions , Cytokines/metabolism , Drug Development , Psoriasis/drug therapy , Inflammation
9.
Mol Cancer Ther ; 21(6): 986-998, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35642431

ABSTRACT

In the past year, four antibody-drug conjugates (ADC) were approved, nearly doubling the marketed ADCs in oncology. Among other attributes, successful ADCs optimize targeting antibody, conjugation chemistry, and payload mechanism of action. Here, we describe the development of ABBV-011, a novel SEZ6-targeted, calicheamicin-based ADC for the treatment of small cell lung cancer (SCLC). We engineered a calicheamicin conjugate that lacks the acid-labile hydrazine linker that leads to systemic release of a toxic catabolite. We then screened a patient-derived xenograft library to identify SCLC as a tumor type with enhanced sensitivity to calicheamicin ADCs. Using RNA sequencing (RNA-seq) data from primary and xenograft SCLC samples, we identified seizure-related homolog 6 (SEZ6) as a surface-expressed SCLC target with broad expression in SCLC and minimal normal tissue expression by both RNA-seq and IHC. We developed an antibody targeting SEZ6 that is rapidly internalized upon receptor binding and, when conjugated to the calicheamicin linker drug, drives potent tumor regression in vitro and in vivo. These preclinical data suggest that ABBV-011 may provide a novel treatment for patients with SCLC and a rationale for ongoing phase I studies (NCT03639194).


Subject(s)
Antineoplastic Agents , Immunoconjugates , Lung Neoplasms , Small Cell Lung Carcinoma , Antineoplastic Agents/pharmacology , Calicheamicins , Clinical Trials, Phase I as Topic , Humans , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Lung Neoplasms/drug therapy , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/genetics
10.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Article in English | MEDLINE | ID: mdl-34155147

ABSTRACT

Antibody-drug conjugates (ADCs) have emerged as valuable targeted anticancer therapeutics with at least 11 approved therapies and over 80 advancing through clinical trials. Enediyne DNA-damaging payloads represented by the flagship of this family of antitumor agents, N-acetyl calicheamicin [Formula: see text], have a proven success track record. However, they pose a significant synthetic challenge in the development and optimization of linker drugs. We have recently reported a streamlined total synthesis of uncialamycin, another representative of the enediyne class of compounds, with compelling synthetic accessibility. Here we report the synthesis and evaluation of uncialamycin ADCs featuring a variety of cleavable and noncleavable linkers. We have discovered that uncialamycin ADCs display a strong bystander killing effect and are highly selective and cytotoxic in vitro and in vivo.


Subject(s)
Anthraquinones/pharmacology , Bystander Effect/drug effects , Immunoconjugates/pharmacology , Animals , Anthraquinones/chemistry , Cell Death/drug effects , Cell Line, Tumor , Humans , Immunoconjugates/chemistry , Mice, Inbred NOD , Mice, SCID , Tumor Burden/drug effects
11.
Bioconjug Chem ; 32(7): 1255-1262, 2021 07 21.
Article in English | MEDLINE | ID: mdl-33835770

ABSTRACT

Delta-like ligand 3 (DLL3) is a therapeutic target for the treatment of small cell lung cancer, neuroendocrine prostate cancer, and isocitrate dehydrogenase mutant glioma. In the clinic, DLL3-targeted 89Zr-immunoPET has the potential to aid in the assessment of disease burden and facilitate the selection of patients suitable for therapies that target the antigen. The overwhelming majority of 89Zr-labeled radioimmunoconjugates are synthesized via the random conjugation of desferrioxamine (DFO) to lysine residues within the immunoglobulin. While this approach is admittedly facile, it can produce heterogeneous constructs with suboptimal in vitro and in vivo behavior. In an effort to circumvent these issues, we report the development and preclinical evaluation of site-specifically labeled radioimmunoconjugates for DLL3-targeted immunoPET. To this end, we modified a cysteine-engineered variant of the DLL3-targeting antibody SC16-MB1 with two thiol-reactive variants of DFO: one bearing a maleimide moiety (Mal-DFO) and the other containing a phenyloxadiazolyl methyl sulfone group (PODS-DFO). In an effort to obtain immunoconjugates with a DFO-to-antibody ratio (DAR) of 2, we explored both the reduction of the antibody with tris(2-carboxyethyl) phosphine (TCEP) as well as the use of a combination of glutathione and arginine as reducing and stabilizing agents, respectively. While exerting control over the DAR of the immunoconjugate proved cumbersome using TCEP, the use of glutathione and arginine enabled the selective reduction of the engineered cysteines and thus the formation of homogeneous immunoconjugates. A head-to-head comparison of the resulting 89Zr-radioimmunoconjugates in mice bearing DLL3-expressing H82 xenografts revealed no significant differences in tumoral uptake and showed comparable radioactivity concentrations in most healthy nontarget organs. However, 89Zr-DFOPODS-DAR2SC16-MB1 produced 30% lower uptake (3.3 ± 0.5 %ID/g) in the kidneys compared to 89Zr-DFOMal-DAR2SC16-MB1 (4.7 ± 0.5 %ID/g). In addition, H82-bearing mice injected with a 89Zr-labeled isotype-control radioimmunoconjugate synthesized using PODS exhibited ∼40% lower radioactivity in the kidneys compared to mice administered its maleimide-based counterpart. Taken together, these results demonstrate the improved in vivo performance of the PODS-based radioimmunoconjugate and suggest that a stable, well-defined DAR2 radiopharmaceutical may be suitable for the clinical immunoPET of DLL3-expressing cancers.


Subject(s)
Immunoconjugates/administration & dosage , Immunoconjugates/chemistry , Intracellular Signaling Peptides and Proteins/chemistry , Membrane Proteins/chemistry , Neoplasms/diagnostic imaging , Positron-Emission Tomography/methods , Animals , Cell Line, Tumor , Humans , Mice , Xenograft Model Antitumor Assays , Zirconium/chemistry
12.
J Org Chem ; 86(3): 2499-2521, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33417458

ABSTRACT

Thailanstatin A and spliceostatin D, two naturally occurring molecules endowed with potent antitumor activities by virtue of their ability to bind and inhibit the function of the spliceosome, and their natural siblings and designed analogues, constitute an appealing family of compounds for further evaluation and optimization as potential drug candidates for cancer therapies. In this article, the design, synthesis, and biological investigation of a number of novel thailanstatin A analogues, including some accommodating 1,1-difluorocyclopropyl and tetrahydrooxazine structural motifs within their structures, are described. Important findings from these studies paving the way for further investigations include the identification of several highly potent compounds for advancement as payloads for antibody-drug conjugates (ADCs) as potential targeted cancer therapies and/or small molecule drugs, either alone or in combination with other anticancer agents.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Antineoplastic Agents/pharmacology , Pyrans/pharmacology
13.
Bioorg Med Chem Lett ; 30(24): 127640, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33127540

ABSTRACT

PNU-159682 is a highly potent secondary metabolite of nemorubicin belonging to the anthracycline class of natural products. Due to its extremely high potency and only partially understood mechanism of action, it was deemed an interesting starting point for the development of a new suite of linker drugs for antibody drug conjugates (ADCs). Structure activity relationships were explored on the small molecule which led to six linker drugs being developed for conjugation to antibodies. Herein we describe the synthesis of novel PNU-159682 derivatives and the subsequent linker drugs as well as the corresponding biological evaluations of the small molecules and ADCs.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Doxorubicin/analogs & derivatives , Immunoconjugates/chemistry , Immunoconjugates/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Doxorubicin/chemical synthesis , Doxorubicin/chemistry , Doxorubicin/pharmacology , Humans , Mice, Inbred NOD , Mice, SCID , Neoplasms/drug therapy
14.
J Am Chem Soc ; 142(29): 12890-12899, 2020 07 22.
Article in English | MEDLINE | ID: mdl-32662641

ABSTRACT

Our previous studies with shishijimicin A resulted in the total synthesis of this scarce marine natural product and a number of its simpler analogues endowed with picomolar potencies against certain cancer cell lines. Herein, we describe the design, synthesis, and biological evaluation of four linker-drugs, anticipating the construction of antibody-drug conjugates (ADCs) as the ultimate goal of this research program. Using a common payload, the assembly of these linker-drugs utilized different linkers and attachment points, providing opportunities to probe the optimal molecular design of the intended ADCs as targeted cancer therapies. In the course of ADC generation and in vitro evaluation, we identified two linker-drugs with a promising in vitro plasma stability profile and excellent targeted cytotoxicity and specificity. Conjugation of shishijimicin A enediyne payloads through their phenolic moiety represents a novel approach to enediyne ADC creation, while the pharmacological profiles of at least two of the generated ADCs compare well with the profiles of the corresponding clinically approved ADC Kadcyla.


Subject(s)
Antineoplastic Agents/pharmacology , Carbolines/pharmacology , Disaccharides/pharmacology , Enediynes/pharmacology , Immunoconjugates/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Carbolines/chemical synthesis , Carbolines/chemistry , Cell Survival/drug effects , Disaccharides/chemical synthesis , Disaccharides/chemistry , Drug Design , Enediynes/chemical synthesis , Enediynes/chemistry , HEK293 Cells , Humans , Immunoconjugates/chemistry , Molecular Structure
15.
Circ Genom Precis Med ; 12(4): e002433, 2019 04.
Article in English | MEDLINE | ID: mdl-30844302

ABSTRACT

BACKGROUND: The sequelae of Kawasaki disease (KD) vary widely with the greatest risk for future cardiovascular events among those who develop giant coronary artery aneurysms (CAA). We sought to define the molecular signature associated with different outcomes in pediatric and adult KD patients. METHODS: Molecular profiling was conducted using mass spectrometry-based shotgun proteomics, transcriptomics, and glycomics methods on 8 pediatric KD patients at the acute, subacute, and convalescent time points. Shotgun proteomics was performed on 9 KD adults with giant CAA and matched healthy controls. Plasma calprotectin was measured by ELISA in 28 pediatric KD patients 1 year post-KD, 70 adult KD patients, and 86 healthy adult volunteers. RESULTS: A characteristic molecular profile was seen in pediatric patients during the acute disease, which resolved at the subacute and convalescent periods in patients with no coronary artery sequelae but persisted in 2 patients who developed giant CAA. We, therefore, investigated persistence of inflammation in KD adults with giant CAA by shotgun proteomics that revealed a signature of active inflammation, immune regulation, and cell trafficking. Correlating results obtained using shotgun proteomics in the pediatric and adult KD cohorts identified elevated calprotectin levels in the plasma of patients with CAA. Investigation of expanded pediatric and adult KD cohorts revealed elevated levels of calprotectin in pediatric patients with giant CAA 1 year post-KD and in adult KD patients who developed giant CAA in childhood. CONCLUSIONS: Complex patterns of biomarkers of inflammation and cell trafficking can persist long after the acute phase of KD in patients with giant CAA. Elevated levels of plasma calprotectin months to decades after acute KD and infiltration of cells expressing S100A8 and A9 in vascular tissues suggest ongoing, subclinical inflammation. Calprotectin may serve as a biomarker to inform the management of KD patients following the acute illness.


Subject(s)
Biomarkers/blood , Coronary Aneurysm/diagnosis , Leukocyte L1 Antigen Complex/blood , Mucocutaneous Lymph Node Syndrome/pathology , Acute Disease , Adult , C-Reactive Protein/analysis , Calgranulin A/metabolism , Calgranulin B/metabolism , Case-Control Studies , Child , Coronary Vessels/metabolism , Humans , Inflammation/etiology , Myocardium/metabolism , Phenotype , Proteomics
16.
PLoS One ; 12(7): e0181251, 2017.
Article in English | MEDLINE | ID: mdl-28759653

ABSTRACT

Intravenous immunoglobulin (IVIg) is a complex mixture drug comprising diverse immunoglobulins and non-IgG proteins purified from the plasma of thousands of healthy donors. Approved IVIg products on the market differ regarding source of plasma, isolation process, and formulation. These products are used widely, and often interchangeably, for the treatment of immunodeficiency and autoimmune and inflammatory diseases, but their mechanisms of action in different indications are not well understood. A primary limitation to understanding the therapeutic relevance of specific components within IVIg has been the limited resolution of analytics historically implemented to characterize its complex mixture. In this study, high-resolution analytics were applied to better understand the composition of IVIg and product variations. We characterized three approved IVIg products: Gammagard®, Privigen®, and Octagam®. Differences in the distribution of molecular weight species, IgG sequence variants, isoforms, glycoforms, and the repertoire of previously reported antibody specificities were identified. We also compared the effect of aging on these products to identify changes in size distribution and posttranslational modifications. This type of characterization may provide insights into the specific factors and components of IVIg that may influence its activity and ultimately lead to optimization of IVIg products for use in autoimmune diseases.


Subject(s)
Autoimmune Diseases/immunology , Immunoglobulin G/therapeutic use , Immunoglobulins, Intravenous/therapeutic use , Immunologic Deficiency Syndromes/drug therapy , Aging , Humans , Immunoglobulin Fragments/chemistry , Immunoglobulin G/chemistry , Mass Spectrometry
17.
Data Brief ; 9: 579-584, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27761513

ABSTRACT

The proteome data provided in this article were acquired from MCF7 breast cancer cells stimulated with insulin, and were generated by using a 2D-SCX (strong cation exchange)/RPLC (reversed phase liquid chromatography) separation protocol followed by tandem mass spectrometry (MS) detection. To facilitate data re-processing by more advanced search engines and the extraction of additional information from already existing files, both raw and processed data are provided. The sample preparation, data acquisition and processing protocols are described in detail. The raw data relate to work published in "Proteome profile of the MCF7 cancer cell line: a mass spectrometric evaluation" (Sarvaiya et al., 2006) [1] and are made available through the PRIDE (PRoteomics IDEntifications)/ProteomeXchange public repository with identifier PRIDE: PXD004051 ("2016 update of the PRIDE database and tools" (Vizcaino et al., 2016) [2]).

18.
Proc Natl Acad Sci U S A ; 112(11): E1297-306, 2015 Mar 17.
Article in English | MEDLINE | ID: mdl-25733881

ABSTRACT

Despite the beneficial therapeutic effects of intravenous immunoglobulin (IVIg) in inflammatory diseases, consistent therapeutic efficacy and potency remain major limitations for patients and physicians using IVIg. These limitations have stimulated a desire to generate therapeutic alternatives that could leverage the broad mechanisms of action of IVIg while improving therapeutic consistency and potency. The identification of the important anti-inflammatory role of fragment crystallizable domain (Fc) sialylation has presented an opportunity to develop more potent Ig therapies. However, translating this concept to potent anti-inflammatory therapeutics has been hampered by the difficulty of generating suitable sialylated products for clinical use. Therefore, we set out to develop the first, to our knowledge, robust and scalable process for generating a well-qualified sialylated IVIg drug candidate with maximum Fc sialylation devoid of unwanted alterations to the IVIg mixture. Here, we describe a controlled enzymatic, scalable process to produce a tetra-Fc-sialylated (s4-IVIg) IVIg drug candidate and its qualification across a wide panel of analytic assays, including physicochemical, pharmacokinetic, biodistribution, and in vivo animal models of inflammation. Our in vivo characterization of this drug candidate revealed consistent, enhanced anti-inflammatory activity up to 10-fold higher than IVIg across different animal models. To our knowledge, this candidate represents the first s4-IVIg suitable for clinical use; it is also a valuable therapeutic alternative with more consistent and potent anti-inflammatory activity.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Drug Design , Immunoglobulins, Intravenous/therapeutic use , N-Acetylneuraminic Acid/metabolism , Receptors, Fc/metabolism , Animals , Anti-Inflammatory Agents/pharmacokinetics , Anti-Inflammatory Agents/pharmacology , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Blister/complications , Blister/drug therapy , Blister/pathology , Disease Models, Animal , Epidermolysis Bullosa Acquisita/complications , Epidermolysis Bullosa Acquisita/drug therapy , Epidermolysis Bullosa Acquisita/pathology , Glycosylation/drug effects , HEK293 Cells , Humans , Immunoglobulin Fab Fragments/metabolism , Immunoglobulins, Intravenous/pharmacokinetics , Immunoglobulins, Intravenous/pharmacology , Mice , Purpura, Thrombocytopenic, Idiopathic/drug therapy , Purpura, Thrombocytopenic, Idiopathic/pathology , Tissue Distribution/drug effects , Treatment Outcome
20.
Electrophoresis ; 28(24): 4645-60, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18072212

ABSTRACT

The development of novel and reliable technologies for the analysis of proteins and their post-translational modifications, in particular, has recently received much attention and interest. The implementation of a fully integrated microfluidic device interfaced with MS detection for the analysis of phosphoproteins is presented in this paper. The microfluidic platform (3''x1.5'') comprises two individual sample processing systems: one for performing direct sample infusion and one for performing microfluidic LC separations. Various MS detection strategies, specific for the study of post-translational modifications, were conducted using alpha-casein as a model protein. Neutral loss ion mapping, data-dependent triple-play and neutral loss analysis, and in situ dephosphorylation followed by LC separation and MS detection were performed. Consistent results in identifying phosphopeptides with conventional and microfluidic instrumentation have been obtained. Unlike with conventional instrumentation, however, the microfluidic device enabled the completion of each analysis from only a few microliters of sample, in approximately 10-15 min, and on a bioanalytical platform that facilitates multiplexing and disposability, and thus high-throughput, contamination-free analysis.


Subject(s)
Mass Spectrometry/methods , Microfluidics/instrumentation , Phosphoproteins/analysis , Amino Acid Sequence , Chromatography, Liquid , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...