Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Org Biomol Chem ; 22(16): 3099-3108, 2024 04 24.
Article in English | MEDLINE | ID: mdl-38444309

ABSTRACT

Fluorescence imaging is a powerful technique for visualizing biological events in living samples with high temporal and spatial resolution. Fluorescent probes emitting far-red to near infrared (NIR) fluorescence are particularly advantageous for in vivo imaging due to their high tissue permeability and low autofluorescence, as well as their suitability for multicolor imaging. Among the far-red to NIR fluorophores, Si-rhodamine is one of the most practical fluorophores for the development of tailor-made NIR fluorescent probes because of the relative ease of synthesis of various derivatives, the unique intramolecular spirocyclization behavior, and the relatively high water solubility and high photostability of the probes. This review summarizes these features of Si-rhodamines and presents recent advances in the synthesis and applications of far-red to NIR fluorescent probes based on Si-rhodamines, focusing on live-cell imaging applications such as fluorogenic probes, super-resolution imaging and dye-protein hybrid-based indicators.


Subject(s)
Fluorescent Dyes , Rhodamines , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Rhodamines/chemistry , Rhodamines/chemical synthesis , Humans , Optical Imaging , Animals , Molecular Structure , Cell Survival
2.
Sci Adv ; 10(7): eadi8847, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38363840

ABSTRACT

Various control strategies are available for building fluorogenic probes to visualize biological events in terms of a fluorescence change. Here, we performed the time-dependent density functional theory (TD-DFT) computational analysis of the twisted intramolecular charge transfer (TICT) process in rhodamine dyes. On the basis of the results, we designed and synthesized a series of rhodamine dyes and established a fluorescence quenching strategy that we call steric repulsion-induced TICT (sr-TICT), in which the fluorescence quenching process is greatly accelerated by simple intramolecular twisting. As proof of concept of this design strategy, we used it to develop a fluorogenic probe, 2-Me PeER (pentyloxyethylrhodamine), for the N-dealkylation activity of CYP3A4. We applied 2-Me PeER for CYP3A4 activity-based fluorescence-activated cell sorting (FACS), providing access to homogeneous, highly functional human-induced pluripotent stem cell (hiPSC)-derived hepatocytes and intestinal epithelial cells. Our results suggest that sr-TICT represents a general fluorescence control method for fluorogenic probes.


Subject(s)
Coloring Agents , Cytochrome P-450 CYP3A , Humans , Fluorescence , Mercaptoethanol , Rhodamines
3.
Sci Rep ; 13(1): 16456, 2023 09 30.
Article in English | MEDLINE | ID: mdl-37777556

ABSTRACT

D,L-Propargylglycine (PAG) has been widely used as a selective inhibitor to investigate the biological functions of cystathionine γ-lyase (CSE), which catalyzes the formation of reactive sulfur species (RSS). However, PAG also inhibits other PLP (pyridoxal-5'-phosphate)-dependent enzymes such as methionine γ-lyase (MGL) and L-alanine transaminase (ALT), so highly selective CSE inhibitors are still required. Here, we performed high-throughput screening (HTS) of a large chemical library and identified oxamic hydrazide 1 as a potent inhibitor of CSE (IC50 = 13 ± 1 µM (mean ± S.E.)) with high selectivity over other PLP-dependent enzymes and RSS-generating enzymes. Inhibitor 1 inhibited the enzymatic activity of human CSE in living cells, indicating that it is sufficiently membrane-permeable. X-Ray crystal structure analysis of the complex of rat CSE (rCSE) with 1 revealed that 1 forms a Schiff base linkage with the cofactor PLP in the active site of rCSE. PLP in the active site may be a promising target for development of selective inhibitors of PLP-dependent enzymes, including RSS-generating enzymes such as cystathionine ß-synthase (CBS) and cysteinyl-tRNA synthetase 2 (CARS2), which have unique substrate binding pocket structures.


Subject(s)
Cystathionine gamma-Lyase , Schiff Bases , Animals , Humans , Rats , Catalytic Domain , Cystathionine beta-Synthase/metabolism , Cystathionine gamma-Lyase/antagonists & inhibitors , Cystathionine gamma-Lyase/metabolism , Phosphates , Pyridoxal Phosphate/metabolism
4.
Mucosal Immunol ; 16(3): 275-286, 2023 06.
Article in English | MEDLINE | ID: mdl-36935091

ABSTRACT

The stimulation of local immunity by vaccination is desirable for controlling virus replication in the respiratory tract. However, the local immune stimulatory effects of adjuvanted vaccines administered through the non-mucosal route are poorly understood. Here, we clarify the mechanisms by which non-mucosal inoculation of adjuvants stimulates the plasmacytoid dendritic cell (pDC)-dependent immunoglobulin (Ig)A response in the lungs. After systemic inoculation with type 1 interferon (IFN)-inducing adjuvants, type 1 IFN promotes CXCL9/10/11 release from alveolar endothelial and epithelial cells and recruits CXCR3-expressing pDCs into the lungs. Because adjuvant-activated pulmonary pDCs highly express major histocompatibility complex II, cluster of differentiation 80, and cluster of differentiation 86, transplantation of such cells into the lungs successfully enhances antigen-specific IgA production by the intranasally sensitized vaccine. In contrast, pDC accumulation in the lungs and subsequent IgA production are impaired in pDC-depleted mice and Ifnar1-/- mice. Notably, the combination of systemic inoculation with type 1 IFN-inducing adjuvants and intranasal antigen sensitization protects mice against influenza virus infection due to the pDC-dependent IgA response and type I IFN response. Our results provide insights into the novel mucosal vaccine strategies using non-mucosal inoculated adjuvants.


Subject(s)
Influenza Vaccines , Interferon Type I , Animals , Mice , Immunoglobulin A , Immunoglobulin G , Immunity, Mucosal , Antibodies, Viral , Adjuvants, Immunologic , Administration, Intranasal , Dendritic Cells , Mice, Inbred BALB C
5.
J Toxicol Sci ; 47(11): 439-451, 2022.
Article in English | MEDLINE | ID: mdl-36328534

ABSTRACT

Aluminum salt adjuvants (Als) have been the most widely used adjuvants in vaccines and known to be effective in intramuscular inoculation. However, in rare cases, some Al containing vaccines caused serious adverse events such as chronic pain at the site of the injection. The Als cause mild tissue damage at the inoculation site, allowing the antigen to be locally retained at the inoculation site and thus potentiate innate immunity. This is required to elicit effectiveness of vaccination. However, there is concern that chronic muscle damage might potentially lead to serious adverse events, such as autoimmune disease and movement disorders. In this study, muscle damage caused by several Al containing vaccines were examined in guinea pigs. Mild and moderate inflammation were observed following Al containing split influenza virus vaccine, formalin-inactivated diphtheria-pertussis-tetanus and Salk polio vaccine. While massive inflammation and muscle damage were observed in Al-containing human papillomavirus vaccine-inoculated animals. However, the severities of damage were not associated with their Al contents. Masson's trichrome staining and immunostaining revealed that injured muscle at the inoculated site recovered within one month of vaccination, whereas inflammatory nodules remained. Flow cytometric analyses of the infiltrating cells revealed that the number of CD45+ lymphocytes and potential granulocytes were increased following vaccination. The number of infiltrated cells seemed to be associated with severity of muscle damages. These observations revealed that Al containing vaccine-induced muscle damage is reparable, and severity of transient muscle damages seemed to be determined by type of antigen or types of Al salts rather than Al content.


Subject(s)
Aluminum , Vaccines , Guinea Pigs , Humans , Animals , Aluminum/toxicity , Vaccines/adverse effects , Adjuvants, Immunologic/toxicity , Inflammation/chemically induced , Muscles
6.
J Am Chem Soc ; 144(43): 19778-19790, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36191139

ABSTRACT

Fluorogenic probes for bioimaging have become essential tools for life science and medicine, and the key to their development is a precise understanding of the mechanisms available for fluorescence off/on control, such as photoinduced electron transfer (PeT) and Förster resonance energy transfer (FRET). Here we establish a new molecular design strategy to rationally develop activatable fluorescent probes, which exhibit a fluorescence off/on change in response to target biomolecules, by controlling the twisted intramolecular charge transfer (TICT) process. This approach was developed on the basis of a thorough investigation of the fluorescence quenching mechanism of N-phenyl rhodamine dyes (commercially available as the QSY series) by means of time-dependent density functional theory (TD-DFT) calculations and photophysical evaluation of their derivatives. To illustrate and validate this TICT-based design strategy, we employed it to develop practical fluorogenic probes for HaloTag and SNAP-tag. We further show that the TICT-controlled fluorescence off/on mechanism is generalizable by synthesizing a Si-rhodamine-based fluorogenic probe for HaloTag, thus providing a palette of chemical dyes that spans the visible and near-infrared range.


Subject(s)
Fluorescence Resonance Energy Transfer , Fluorescent Dyes , Fluorescent Dyes/chemistry , Rhodamines , Ionophores
7.
RSC Chem Biol ; 3(7): 859-867, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35866167

ABSTRACT

Monitoring the activities of proteases in vivo is an important requirement in biological and medical research. Near-infrared (NIR) fluorescent probes are particularly useful for in vivo fluorescence imaging, due to the high penetration of NIR and the low autofluorescence in tissue for this wavelength region, but most current NIR fluorescent probes for proteases are targeted to endopeptidase. Here, we describe a new molecular design for NIR fluorescent probes that target exopeptidase by utilizing the >110 nm blueshift of unsymmetrical Si-rhodamines upon amidation of the N atom of their xanthene moiety. Based on this molecular design, we developed Leu-SiR640 as a probe for leucine amino peptidase (LAP). Leu-SiR640 shows a one order of magnitude larger fluorescence increment (669-fold) upon reaction with LAP than existing NIR fluorescent probes. We similarly designed and synthesized EP-SiR640, a NIR fluorescent probe that targets dipeptidyl peptidase 4 (DPP-4). We show that this probe can monitor DPP-4 activity not only in living cells but also in mouse organs and tumors. This probe could also detect esophageal cancer in human clinical specimens, based on the overexpression of DPP-4 activity.

8.
Biomolecules ; 11(11)2021 10 20.
Article in English | MEDLINE | ID: mdl-34827552

ABSTRACT

Hydrogen sulfide and its oxidation products are involved in many biological processes, and sulfane sulfur compounds, which contain sulfur atoms bonded to other sulfur atom(s), as found in hydropersulfides (R-S-SH), polysulfides (R-S-Sn-S-R), hydrogen polysulfides (H2Sn), etc., have attracted increasing interest. To characterize their physiological and pathophysiological roles, selective detection techniques are required. Classically, sulfane sulfur compounds can be detected by cyanolysis, involving nucleophilic attack by cyanide ion to cleave the sulfur-sulfur bonds. The generated thiocyanate reacts with ferric ion, and the resulting ferric thiocyanate complex can be easily detected by absorption spectroscopy. Recent exploration of the properties of sulfane sulfur compounds as both nucleophiles and electrophiles has led to the development of various chemical techniques for detection, isolation, and bioimaging of sulfane sulfur compounds in biological samples. These include tag-switch techniques, LC-MS/MS, Raman spectroscopy, and fluorescent probes. Herein, we present an overview of the techniques available for specific detection of sulfane sulfur species in biological contexts.


Subject(s)
Sulfur , Sulfides
9.
J Immunotoxicol ; 18(1): 163-172, 2021 12.
Article in English | MEDLINE | ID: mdl-34761701

ABSTRACT

The importance of alveolar macrophages has been reported in many toxicology/immunology studies. Alveolar macrophages release interleukin (IL)-1α as a damage-associated molecular pattern (DAMP) when stimulated by fine particles. However, it is unclear whether cell isolation procedures affect ex vivo particle-induced responses in primary mouse alveolar macrophages (mAM). In this study, effects of injection buffer volume used to perform bronchoalveolar lavage fluid (BALF) collection to isolate mAM for use in ex vivo particle-induced responses were assessed. Among the mAM obtained from BALF collected using a 0.55 or 0.75 ml, but not a 1.0 ml buffer injection volume, decreased cell viability and IL-1α release were observed when cells were stimulated ex vivo with silica crystal or aluminum salt. Injected buffer composition did not affect the IL-1α release. On the other hand, IL-6 secretion induced by lipopolysaccharide (LPS) did not differ among mAM obtained from BALF collected using the different volumes. Expression levels of cell surface markers like CD11c, SiglecF, and CD64 did not differ among mAM obtained from BALF collected using the different injection buffer volumes. IL-1α release (and also necroptosis) induced by ex vivoparticle stimulation was suppressed by RIPK3 inhibitor or cytochalasin D co-treatment. Decreases in RIPK3 phosphorylation were noted in mAM obtained in BALF collected using the 1.0 ml injection volume compared with mAM obtained in BALF using 0.55 or 0.75 ml buffer. These observations illustrate that larger volumes of buffer used to collect BALF from mice can affect sensitivity of the isolated mAM to ex vivo particle-induced responses by inhibiting their functions.


Subject(s)
Macrophages, Alveolar , Silicon Dioxide , Animals , Bronchoalveolar Lavage Fluid , Cell Separation , Lipopolysaccharides , Mice
10.
PLoS Pathog ; 17(8): e1009890, 2021 08.
Article in English | MEDLINE | ID: mdl-34460865

ABSTRACT

Aluminum hydroxide salts (alum) have been added to inactivated vaccines as safe and effective adjuvants to increase the effectiveness of vaccination. However, the exact cell types and immunological factors that initiate mucosal immune responses to alum adjuvants are unclear. In this study, the mechanism of action of alum adjuvant in nasal vaccination was investigated. Alum has been shown to act as a powerful and unique adjuvant when added to a nasal influenza split vaccine in mice. Alum is cytotoxic in the alveoli and stimulates the release of damage-associated molecular patterns, such as dsDNA, interleukin (IL)-1α, and IL-33. We found that Ag-specific IgA antibody (Ab) production was markedly reduced in IL-33-deficient mice. However, no decrease was observed in Ag-specific IgA Ab production with DNase I treatment, and no decrease was observed in IL-1α/ß or IL-6 production in IL-33-deficient mice. From the experimental results of primary cultured cells and immunofluorescence staining, although IL-1α was secreted by alveolar macrophage necroptosis, IL-33 release was observed in alveolar epithelial cell necroptosis but not in alveolar macrophages. Alum- or IL-33-dependent Ag uptake enhancement and elevation of OX40L expression were not observed. By stimulating the release of IL-33, alum induced Th2 immunity via IL-5 and IL-13 production in group 2 innate lymphoid cells (ILC2s) and increased MHC class II expression in antigen-presenting cells (APCs) in the lung. Our results suggest that IL-33 secretion by epithelial cell necroptosis initiates APC- and ILC2-mediated T cell activation, which is important for the enhancement of Ag-specific IgA Ab production by alum.


Subject(s)
Aluminum Hydroxide/chemistry , Alveolar Epithelial Cells/immunology , Immunoglobulin A/metabolism , Influenza Vaccines/administration & dosage , Interleukin-33/physiology , Orthomyxoviridae Infections/immunology , Th2 Cells/immunology , Adjuvants, Immunologic/administration & dosage , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/virology , Animals , Antibodies, Viral/immunology , Antibody Formation , Female , Immunity, Innate/drug effects , Immunity, Innate/immunology , Immunoglobulin A/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Nasal Mucosa/chemistry , Nasal Mucosa/metabolism , Orthomyxoviridae/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/virology , Vaccination
11.
Front Immunol ; 11: 2171, 2020.
Article in English | MEDLINE | ID: mdl-33013912

ABSTRACT

The efficacy of vaccine adjuvants depends on their ability to appropriately enhance the immunogenicity of vaccine antigens, which is often insufficient in non-adjuvanted vaccines. Genomic analyses of immune responses elicited by vaccine adjuvants provide information that is critical for the rational design of adjuvant vaccination strategies. In this study, biomarker genes from the genomic analyses of lungs after priming were used to predict the efficacy and toxicity of vaccine adjuvants. Based on the results, it was verified whether the efficacy and toxicity of the tested adjuvants could be predicted based on the biomarker gene profiles after priming. Various commercially available adjuvants were assessed by combining them with the split influenza vaccine and were subsequently administered in mice through nasal inoculation. The expression levels of lung biomarker genes within 24 h after priming were analyzed. Furthermore, we analyzed the antibody titer, cytotoxic T lymphocyte (CTL) induction, IgG1/IgG2a ratio, leukopenic toxicity, and cytotoxicity in mice vaccinated at similar doses. The association between the phenotypes and the changes in the expression levels of biomarker genes were analyzed. The ability of the adjuvants to induce the production of antigen-specific IgA could be assessed based on the levels of Timp1 expression. Furthermore, the expression of this gene partially correlated with the levels of other damage-associated molecular patterns in bronchoalveolar lavage fluid. Additionally, the changes in the expression of proteasome- and transporter-related genes involved in major histocompatibility complex class 1 antigen presentation could be monitored to effectively assess the expansion of CTL by adjuvants. The monitoring of certain genes is necessary for the assessment of leukopenic toxicity and cytotoxicity of the tested adjuvant. These results indicate that the efficacy and toxicity of various adjuvants can be characterized by profiling lung biomarker genes after the first instance of immunization. This approach could make a significant contribution to the development of optimal selection and exploratory screening strategies for novel adjuvants.


Subject(s)
Adjuvants, Immunologic/pharmacology , Biomarkers , Immunization/methods , Influenza Vaccines/immunology , Lung/drug effects , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/toxicity , Administration, Intranasal , Animals , Antibodies, Viral/biosynthesis , Antibodies, Viral/immunology , Bronchoalveolar Lavage Fluid , Cytotoxicity, Immunologic/drug effects , Dose-Response Relationship, Immunologic , Drug Evaluation, Preclinical , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Immunoglobulin A/biosynthesis , Immunoglobulin A/immunology , Immunoglobulin G/biosynthesis , Immunoglobulin G/blood , Influenza Vaccines/administration & dosage , Lung/immunology , Lung/metabolism , Mice , Mice, Inbred BALB C , T-Lymphocyte Subsets/immunology , Th1-Th2 Balance/drug effects , Tissue Inhibitor of Metalloproteinase-1/biosynthesis , Tissue Inhibitor of Metalloproteinase-1/genetics , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/immunology
12.
J Clin Invest ; 130(11): 6171-6186, 2020 11 02.
Article in English | MEDLINE | ID: mdl-33074247

ABSTRACT

Human T cell leukemia virus type 1 (HTLV-1) is mainly transmitted vertically through breast milk. The rate of mother-to-child transmission (MTCT) through formula feeding, although significantly lower than through breastfeeding, is approximately 2.4%-3.6%, suggesting the possibility of alternative transmission routes. MTCT of HTLV-1 might occur through the uterus, birth canal, or placental tissues; the latter is known as transplacental transmission. Here, we found that HTLV-1 proviral DNA was present in the placental villous tissues of the fetuses of nearly half of pregnant carriers and in a small number of cord blood samples. An RNA ISH assay showed that HTLV-1-expressing cells were present in nearly all subjects with HTLV-1-positive placental villous tissues, and their frequency was significantly higher in subjects with HTLV-1-positive cord blood samples. Furthermore, placental villous trophoblasts expressed HTLV-1 receptors and showed increased susceptibility to HTLV-1 infection. In addition, HTLV-1-infected trophoblasts expressed high levels of viral antigens and promoted the de novo infection of target T cells in a humanized mouse model. In summary, during pregnancy of HTLV-1 carriers, HTLV-1 was highly expressed in placental villous tissues, and villous trophoblasts showed high HTLV-1 sensitivity, suggesting that MTCT of HTLV-1 occurs through the placenta.


Subject(s)
HTLV-I Infections/metabolism , Human T-lymphotropic virus 1/metabolism , Infectious Disease Transmission, Vertical , Pregnancy Complications, Infectious/metabolism , Trophoblasts/metabolism , Adult , Cells, Cultured , Female , HTLV-I Infections/pathology , HTLV-I Infections/transmission , Humans , Pregnancy , Pregnancy Complications, Infectious/pathology , Pregnancy Complications, Infectious/virology , Trophoblasts/pathology , Trophoblasts/virology
13.
Proc Natl Acad Sci U S A ; 117(40): 24794-24801, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32958639

ABSTRACT

The structure of lincomycin A consists of the unusual eight-carbon thiosugar core methyllincosamide (MTL) decorated with a pendent N-methylprolinyl moiety. Previous studies on MTL biosynthesis have suggested GDP-ᴅ-erythro-α-ᴅ-gluco-octose and GDP-ᴅ-α-ᴅ-lincosamide as key intermediates in the pathway. However, the enzyme-catalyzed reactions resulting in the conversion of GDP-ᴅ-erythro-α-ᴅ-gluco-octose to GDP-ᴅ-α-ᴅ-lincosamide have not yet been elucidated. Herein, a biosynthetic subpathway involving the activities of four enzymes-LmbM, LmbL, CcbZ, and CcbS (the LmbZ and LmbS equivalents in the closely related celesticetin pathway)-is reported. These enzymes catalyze the previously unknown biosynthetic steps including 6-epimerization, 6,8-dehydration, 4-epimerization, and 6-transamination that convert GDP-ᴅ-erythro-α-ᴅ-gluco-octose to GDP-ᴅ-α-ᴅ-lincosamide. Identification of these reactions completes the description of the entire lincomycin biosynthetic pathway. This work is significant since it not only resolves the missing link in octose core assembly of a thiosugar-containing natural product but also showcases the sophistication in catalytic logic of enzymes involved in carbohydrate transformations.


Subject(s)
Lincomycin/biosynthesis , Streptomyces/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biosynthetic Pathways , Lincomycin/chemistry , Lincosamides/chemistry , Lincosamides/metabolism , Streptomyces/chemistry , Streptomyces/enzymology , Streptomyces/genetics
14.
Expert Opin Drug Metab Toxicol ; 16(11): 1051-1061, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32772723

ABSTRACT

INTRODUCTION: A novel adjuvant evaluation system for safety and immunogenicity is needed. Vaccination is important for infection prevention, for example, from influenza viruses. Adjuvants are considered critical for improving the effectiveness of influenza vaccines. Adjuvant development is an important issue in influenza vaccine design. AREAS COVERED: A conventional in vivo evaluation method for vaccine safety has been limited in analyzing phenotypic and pathological changes. Therefore, it is difficult to obtain information on the changes at the molecular level. This review aims to explain the recently developed genomics analysis-based vaccine adjuvant safety evaluation tools verified by AddaVaxTM and polyinosinic-polycytidylic acid (poly I:C) using 18 biomarker genes and whole-virion inactivated influenza vaccine as a toxicity control. Genomics analyzes would help provide safety and efficacy information regarding influenza vaccine design by facilitating appropriate adjuvant selection. EXPERT OPINION: The efficacy and safety profiles of influenza vaccines and adjuvants using genomics technologies provide useful information regarding immunogenicity, which is related to safety and efficacy. This approach provides important information to select appropriate inoculation routes, combinations of vaccine antigens and adjuvants, and dosing amounts. The efficacy of vaccine adjuvant evaluation by genomics analysis should be verified by various studies using various vaccines in the future.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Influenza Vaccines/administration & dosage , Adjuvants, Immunologic/adverse effects , Animals , Genomics , Humans , Immunogenicity, Vaccine , Influenza Vaccines/adverse effects , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Vaccination
15.
Chembiochem ; 21(1-2): 74-79, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31523885

ABSTRACT

The enzyme lumazine synthase (LS) has been engineered to self-assemble into hollow-shell structures that encapsulate unnatural cargo proteins through complementary electrostatic interactions. Herein, we show that a negatively supercharged LS variant can also form organic-inorganic hybrids with gold nanomaterials. Simple mixing of LS pentamers with positively charged gold nanocrystals in aqueous buffer spontaneously affords protein-shelled gold cores. The procedure works well with differently sized and shaped gold nanocrystals, and the resulting shelled complexes exhibit dramatically enhanced colloidal stability over a wide range of pH (4.0-10.0) and at high ionic strength (up to 1 m NaCl). They are even stable over days upon dilution in buffer. Self-assembly of engineered LS shells in this way offers an easy and attractive alternative to commonly used ligand-exchange methods for stabilizing inorganic nanomaterials.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Multienzyme Complexes/biosynthesis , Colloids/chemistry , Colloids/metabolism , Gold/metabolism , Hydrogen-Ion Concentration , Multienzyme Complexes/chemistry , Osmolar Concentration , Particle Size , Porosity , Protein Engineering , Surface Properties
16.
Sci Rep ; 9(1): 16249, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31700085

ABSTRACT

The safety evaluation of vaccines is critical to avoid the development of side effects in humans. To increase the sensitivity of detection for toxicity tests, it is important to capture not only pathological changes but also physiological changes. 1H nuclear magnetic resonance (NMR) spectroscopy analysis of biofluids produces profiles that show characteristic responses to changes in physiological status. In this study, mouse urine metabolomics analysis with 1H NMR was performed using different influenza vaccines of varying toxicity to assess the usefulness of 1H NMR in evaluating vaccine toxicity. Two types of influenza vaccines were used as model vaccines: a toxicity reference vaccine (RE) and a hemagglutinin split vaccine. According to the blood biochemical analyses, the plasma alanine transaminase levels were increased in RE-treated mice. Changes in metabolite levels between mice administered different types of influenza vaccines were observed in the 1H NMR spectra of urine, and a tendency toward dosage-dependent responses for some spectra was observed. Hierarchical clustering analyses and principal component analyses showed that the changes in various urine metabolite levels allowed for the classification of different types of vaccines. Among them, two liver-derived metabolites were shown to largely contribute to the formation of the cluster. These results demonstrate the possibility that urine metabolomics analysis could provide information about vaccine-induced toxicity and physiological changes.


Subject(s)
Influenza Vaccines/pharmacology , Metabolomics , Urinalysis , Animals , Blood Chemical Analysis , Body Weight/immunology , Female , Leukocytes/cytology , Mice , Vaccines, Inactivated/pharmacology
17.
Yakugaku Zasshi ; 139(2): 199-208, 2019.
Article in Japanese | MEDLINE | ID: mdl-30713229

ABSTRACT

Proteins are excellent materials for constructing nano- to micro-meter sized compartments. For example, in nature, hollow spherical shells made of proteins, called protein cages, are widespread. Prominent examples include viruses, ferritins, carboxysomes, and others. Protein cages designed and engineered in the laboratory have also gained recent attention because of their potential use in synthetic biology, materials science, and medicine. Here, we show that engineered variants of lumazine synthase (LS) from Aquifex aeolicus self-assemble into porous shell-like structures, with striking size-expansion from the original dodecahedron composed of 12 pentamer subunits. Cryo-electron microscopy (EM) analysis has revealed that pentamers are the basic assembly units, although small conformational changes in each subunit lead to final expanded architectures composed of 36 and 72 pentamers. The underlying conformational changes likely arise from electrostatic repulsion between anionic residues originally introduced at the lumenal surface of the LS cage to encapsulate positively charged guest molecules. The plastic nature of the LS cage structure was also explored using a positively supercharged variant of the green fluorescent protein GFP(+36) as an assembly mediator. By controlling the favorable electrostatic interactions between the negatively charged LS cage and the positively charged mediator, multishell structures were created, as previously observed in some virus-like particles. These results highlight the potential of engineered LS cages for various future applications, including drug delivery and bioimaging.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/ultrastructure , Multienzyme Complexes/chemistry , Protein Engineering , Bacteria/enzymology , Cryoelectron Microscopy , Drug Delivery Systems , Molecular Imaging , Nanoparticles , Particle Size , Protein Conformation , Static Electricity
18.
Vaccine ; 36(46): 7112-7118, 2018 11 12.
Article in English | MEDLINE | ID: mdl-30318166

ABSTRACT

Vaccines effectively prevent infectious diseases. Many types of vaccines against various pathogens that threaten humans are currently in widespread use. Recently, adjuvant adaptation has been attempted to activate innate immunity to enhance the effectiveness of vaccines. The effectiveness of adjuvants for vaccinations has been demonstrated in many animal models and clinical trials. Although a highly potent adjuvant tends to have high effectiveness, it also has the potential to increase the risk of side effects such as pain, edema, and fever. Indeed, highly effective adjuvants, such as poly(I:C), have not been clinically applied due to their high risks of toxicity in humans. Therefore, the task in the field of adjuvant development is to clinically apply highly effective and non- or low-toxic adjuvant-containing vaccines. To resolve this issue, it is essential to ensure a low risk of side effects and the high efficacy of an adjuvant in the early developmental phases. This review summarizes the theory and history of the current safety assessment methods for adjuvants, using the inactivated influenza vaccine as a model. Our novel method was developed as a system to judge the safety of a candidate compound using biomarkers identified by genomic technology and statistical tools. A systematic safety assessment tool for adjuvants would be of great use for predicting toxicity during novel adjuvant development, screening, and quality control.


Subject(s)
Adjuvants, Immunologic/adverse effects , Biomarkers, Pharmacological/analysis , Biostatistics/methods , Genomics/methods , Adjuvants, Immunologic/administration & dosage , Animals , Humans , Influenza Vaccines/administration & dosage , Influenza Vaccines/immunology , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/immunology
19.
Vaccine ; 36(43): 6449-6455, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30243500

ABSTRACT

Influenza becomes epidemic worldwide every year, and many individuals receive vaccination annually. Quality control relating to safety and potency of influenza vaccines is important to maintain public confidence. The safety of influenza vaccines has been assessed by clinical trials, and animal safety tests are performed to monitor the consistent quality between vaccines used for clinical trials and marketing; the biological responses in vaccinated animals are evaluated, including changes in body weight and white blood cell count. Animal safety tests have been contributing to the quality relating to the safety of influenza vaccines for decades, but improvements are needed. Although precise mechanisms involving biological changes in animal safety tests have not been fully elucidated, the application of cDNA microarray technology make it possible to reliably identify genes related to biological responses in vaccinated animals. From analysis of the expression profile of >10,000 genes of lung in animals treated with an inactivated whole virion influenza vaccine, we identified 17 marker genes whose expression patterns correlated well to changes in body weight and leukocyte count in vaccinated animals. In influenza HA vaccine-treated animals exhibiting subtle changes in biological responses, a robust expression pattern of marker genes was found. Furthermore, these marker genes could also be used in the evaluation of adjuvanted influenza vaccines. The expression profile of marker genes is expected to be an alternative indicator for safety control of various influenza vaccines conferring high sensitivity and short turnaround time. Thus, gene expression profiling may be a powerful tool for safety control of vaccines in the future.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Gene Expression Profiling , Influenza Vaccines/therapeutic use , Orthomyxoviridae Infections/genetics , Animals , Antibodies, Viral/blood , Biomarkers/analysis , Body Weight , Guinea Pigs , Influenza A Virus, H5N1 Subtype , Influenza Vaccines/adverse effects , Japan , Microarray Analysis , Quality Control , Rats , Toxicity Tests , Vaccines, Inactivated/adverse effects , Vaccines, Inactivated/therapeutic use
20.
Biologicals ; 55: 43-52, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30017557

ABSTRACT

Recently, many vaccine adjuvants have been developed; however, most of the newly developed adjuvants have been dropped out of preclinical and clinical trials owing to their unexpected toxicity. Thus, the development of highly quantitative and comparable screening methods for evaluating adjuvant safety is needed. In a previous study, we identified specific biomarkers for evaluating the safety of an intranasal influenza vaccine with CpG K3 adjuvant by comparing biomarker expression. We hypothesized that these biomarkers might be useful for screening newly developed adjuvant safety. We compared the expression of biomarkers in mouse lungs by the intranasal administration of 4 types of adjuvants: Alum, Pam3CSK4, NanoSiO2, and DMXAA with subvirion influenza vaccine. The control adjuvant alum did not show any significant increase in biomarker expression or preclinical parameters; however, NanoSiO2 and Pam3CSK4 increased the expression of biomarkers, such as Timp1 and Csf1. DMXAA at 300 µg induced the expression of over 80% of biomarkers. Hierarchical clustering analysis showed that 300 µg DMXAA was classified in the toxicity reference whole-particle influenza vaccine cluster. FACS analysis to confirm specific phenotypes that the number of T cells decreased in DMXAA-treated mouse lungs. Thus, our biomarkers are useful for initial adjuvant safety and toxicity screening.


Subject(s)
Adjuvants, Immunologic , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/pharmacology , Administration, Intranasal , Animals , Drug Evaluation, Preclinical , Female , Influenza A Virus, H1N1 Subtype/chemistry , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/chemistry , Influenza Vaccines/immunology , Influenza Vaccines/pharmacology , Mice , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL
...