Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 708: 149801, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38531219

ABSTRACT

Toll-like receptor (TLR) agonists or pro-inflammatory cytokines converge to activate the nuclear factor κB (NF-κB) signaling pathway, which provokes inflammatory responses. In the present study, we identified amiodarone hydrochloride as a selective inhibitor of the TLR3-mediated NF-κB signaling pathway by screening the RIKEN NPDepo Chemical Library. In human umbilical vein endothelial cells (HUVEC), amiodarone selectively inhibited the expression of intercellular adhesion molecule-1 (ICAM-1) induced by polyinosinic-polycytidylic acid (Poly(I:C)), but not tumor necrosis factor-α, interleukin-1α, or lipopolysaccharide. In response to a Poly(I:C) stimulation, amiodarone at 20 µM reduced the up-regulation of mRNA expression encoding ICAM-1, vascular cell adhesion molecule-1, and E-selectin. The nuclear translocation of the NF-κB subunit RelA was inhibited by amiodarone at 15-20 µM in Poly(I:C)-stimulated HUVEC. Amiodarone diminished the fluorescent dots of LysoTracker® Red DND-99 scattered over the cytoplasm of HUVEC. Therefore, the present study revealed that amiodarone selectively inhibited the TLR3-mediated NF-κB signaling pathway by blocking the acidification of intracellular organelles.


Subject(s)
Amiodarone , NF-kappa B , Humans , NF-kappa B/metabolism , Intercellular Adhesion Molecule-1/metabolism , Toll-Like Receptor 3/metabolism , Endothelial Cells/metabolism , Amiodarone/pharmacology , Amiodarone/metabolism , Cells, Cultured , Signal Transduction , Vascular Cell Adhesion Molecule-1/metabolism , Organelles/metabolism , Hydrogen-Ion Concentration
2.
Eur J Pharmacol ; 969: 176458, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38395373

ABSTRACT

Alantolactone is a eudesmane-type sesquiterpene lactone that exerts various biological effects, including anti-inflammatory activity. In the present study, screening using the RIKEN Natural Products Depository chemical library identified alantolactone derivatives that inhibited the expression of intercellular adhesion molecule-1 (ICAM-1) on human umbilical vein endothelial cells stimulated with proinflammatory cytokines and Toll-like receptor ligands. In human lung adenocarcinoma A549 cells stimulated with tumor necrosis factor-α (TNF-α), six alantolactone derivatives inhibited ICAM-1 expression in a dose-dependent manner and at IC50 values of 13-21 µM, whereas that of alantolactone was 5 µM. Alantolactone possesses an α-methylene-γ-lactone moiety, whereas alantolactone derivatives do not. In the nuclear factor κB (NF-κB) signaling pathway, alantolactone prevented the TNF-α-induced phosphorylation and degradation of the inhibitor of NF-κB α (IκBα) protein, and its downstream signaling pathway. In contrast, alantolactone derivatives neither reduced TNF-α-induced IκBα degradation nor the nuclear translocation of the NF-κB subunit RelA, but inhibited the binding of RelA to the ICAM-1 promoter. The inhibitory activities of alantolactone and alantolactone derivatives were attenuated by glutathione. These results indicate that alantolactone derivatives inhibit the TNF-α-induced NF-κB pathway by a different mechanism from alantolactone.


Subject(s)
Lung Neoplasms , Sesquiterpenes, Eudesmane , Humans , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/pharmacology , NF-KappaB Inhibitor alpha , Intercellular Adhesion Molecule-1/metabolism , Lactones/pharmacology , Sesquiterpenes, Eudesmane/pharmacology , Human Umbilical Vein Endothelial Cells , Lung Neoplasms/metabolism
3.
Molecules ; 27(10)2022 May 11.
Article in English | MEDLINE | ID: mdl-35630550

ABSTRACT

Ursane-type pentacyclic triterpenoids exert various biological effects, including anticancer and anti-inflammatory activities. We previously reported that ursolic acid, corosolic acid, and asiatic acid interfered with the intracellular trafficking and glycosylation of intercellular adhesion molecule-1 (ICAM-1) in human lung adenocarcinoma A549 cells stimulated with the pro-inflammatory cytokine interleukin-1α. However, the structure-activity relationship of ursane-type pentacyclic triterpenoids remains unclear. In the present study, the biological activities of seven ursane-type pentacyclic triterpenoids (ß-boswellic acid, uvaol, madecassic acid, 3-O-acetyl-11-keto-ß-boswellic acid, ursolic acid, corosolic acid, and asiatic acid) were investigated. We revealed that the inhibitory activities of ursane-type pentacyclic triterpenoids on the cell surface expression and glycosylation of ICAM-1 and α-glucosidase activity were influenced by the number of hydroxy groups and/or the presence and position of a carboxyl group. We also showed that ß-boswellic acid interfered with ICAM-1 glycosylation in a different manner from other ursane-type pentacyclic triterpenoids.


Subject(s)
Adenocarcinoma of Lung , Intercellular Adhesion Molecule-1 , Triterpenes , A549 Cells , Adenocarcinoma of Lung/drug therapy , Glycosylation , Humans , Intercellular Adhesion Molecule-1/metabolism , Triterpenes/pharmacology
5.
Eur J Pharmacol ; 890: 173651, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33049301

ABSTRACT

α-Conidendrin is a lignan isolated from Taxus wallichiana and other species. In the present study, we demonstrated that α-conidendrin inhibited the cell-surface expression of intercellular adhesion molecule-1 (ICAM-1) induced by tumor necrosis factor-α (TNF-α) at an IC50 value of 40-60 µM in human lung adenocarcinoma A549 cells. α-Conidendrin decreased ICAM-1 protein and mRNA expression levels at concentrations of 40-100 µM in TNF-α-stimulated A549 cells. The TNF-α-induced mRNA expression of vascular cell adhesion molecule-1, E-selectin, and cyclooxygenase-2 was also reduced by α-conidendrin. In the TNF-α-induced nuclear factor κB (NF-κB) signaling pathway, α-conidendrin did not influence the translocation of the NF-κB subunit RelA from the cytoplasm to the nucleus at concentrations up to 100 µM. A chromatin immunoprecipitation assay revealed that α-conidendrin at 100 µM reduced the binding of RelA to the ICAM-1 promoter in response to a stimulation with TNF-α. Collectively, these results indicated that α-conidendrin interfered with the DNA binding of RelA to the ICAM-1 promoter, thereby reducing ICAM-1 transcription.


Subject(s)
Adenocarcinoma of Lung/metabolism , Intercellular Adhesion Molecule-1/biosynthesis , Intercellular Adhesion Molecule-1/genetics , Lignans/pharmacology , Lung Neoplasms/metabolism , Tetrahydronaphthalenes/pharmacology , A549 Cells , Adenocarcinoma of Lung/drug therapy , Cell Survival/drug effects , Chromans/pharmacology , Cyclooxygenase 2/metabolism , E-Selectin/drug effects , E-Selectin/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Intercellular Adhesion Molecule-1/drug effects , Lung Neoplasms/drug therapy , Promoter Regions, Genetic/drug effects , Signal Transduction/drug effects , Transcription Factor RelA/metabolism , Tumor Necrosis Factor-alpha/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...