Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Appl Microbiol ; 133(4): 2583-2598, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35870145

ABSTRACT

AIMS: To determine the antimicrobial potency of a surface-anchored quaternary ammonium salt (SAQAS)-based biocide during in vitro wet and dry fomite assays and to determine the mechanism of killing bacteria on the surface. METHODS AND RESULTS: Wet and dry fomite assays were established in vitro for a commercially available biocide (SAQAS-A) applied to glass and low-density polyethylene (LDPE) surfaces. Both wet and dry fomite tests showed the active killing of Gram-positive and Gram-negative bacteria but not endospores. Assays measuring membrane permeability (ATP and DNA release), bacterial membrane potential and bacterial ROS production were correlated with the time-to-kill profiles to show SAQAS-A activity in suspension and applied to a surface. CONCLUSIONS: SAQAS-A is an effective biocide against model strains of vegetative bacteria. The killing mechanism for SAQAS-A observed minimal membrane depolarization, a surge in ROS production and assessment of membrane permeability supported the puncture of cells in both suspension and surface attachment, leading to cell death. SIGNIFICANCE AND IMPACT OF THE STUDY: SAQAS represents effective surface biocides against single challenges with bacteria through a mechanical killing ability that supports real-world application if their durability can be demonstrated to maintain residual activity.


Subject(s)
Anti-Infective Agents , Disinfectants , Adenosine Triphosphate , Anti-Bacterial Agents/pharmacology , Bacteria , Disinfectants/pharmacology , Gram-Negative Bacteria , Gram-Positive Bacteria , Microbial Sensitivity Tests , Polyethylene/pharmacology , Quaternary Ammonium Compounds/pharmacology , Reactive Oxygen Species
SELECTION OF CITATIONS
SEARCH DETAIL