Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 12(7)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34210058

ABSTRACT

Magnetic nanoparticles have attracted significant attention in various disciplines, including engineering and medicine. Microfluidic chips and lab-on-a-chip devices, with precise control over small volumes of fluids and tiny particles, are appropriate tools for the synthesis, manipulation, and evaluation of nanoparticles. Moreover, the controllability and automation offered by the microfluidic chips in combination with the unique capabilities of the magnetic nanoparticles and their ability to be remotely controlled and detected, have recently provided tremendous advances in biotechnology. In particular, microfluidic chips with magnetic nanoparticles serve as sensitive, high throughput, and portable devices for contactless detecting and manipulating DNAs, RNAs, living cells, and viruses. In this work, we review recent fundamental advances in the field with a focus on biomedical applications. First, we study novel microfluidic-based methods in synthesizing magnetic nanoparticles as well as microparticles encapsulating them. We review both continues-flow and droplet-based microreactors, including the ones based on the cross-flow, co-flow, and flow-focusing methods. Then, we investigate the microfluidic-based methods for manipulating tiny magnetic particles. These manipulation techniques include the ones based on external magnets, embedded micro-coils, and magnetic thin films. Finally, we review techniques invented for the detection and magnetic measurement of magnetic nanoparticles and magnetically labeled bioparticles. We include the advances in anisotropic magnetoresistive, giant magnetoresistive, tunneling magnetoresistive, and magnetorelaxometry sensors. Overall, this review covers a wide range of the field uniquely and provides essential information for designing "lab-on-a-chip" systems for synthesizing magnetic nanoparticles, labeling bioparticles with them, and sorting and detecting them on a single chip.

2.
Bioelectrochemistry ; 128: 118-125, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30978518

ABSTRACT

Nitinols (Nickel-titanium alloys) have a good electrical conductivity and biocompatibility with human tissue and bacteria and, therefore, can be effectively used as an anode material in bioelectrochemical systems. This paper aimed to use nitinols (at different Ni/Ti ratios) as an anode material for microbial fuel cells (MFCs) in order to achieve higher power density. The maximum power densities of the MFCs using NiTi-1, NiTi-2, and NiTi-3 electrodes were 555 mW/m2, 811 mW/m2, and 652 mW/m2, respectively. More bacterial adhesion was observed on the NiTi-2 electrode. Electrochemical impedance spectroscopy (EIS) results showed low charge transfer resistance at MFCs fabricated with NiTi. The biofilm observations indicate that bacterial attachment is better with NiTi-2 as compared with that on NiTi-1 and NiTi-3. The resulting mesopore and macropore rich structure significantly promote microbial colonization, enabling formation of compact electroactive biofilms with additional benefit from the excellent biocompatibility and chemical stability of NiTi-2. Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) results indicated that five groups of bacteria were the dominant phyla in the MFCs: environmental samples, b-proteobacteria, g-proteobacteria, d-proteobacteria, and CFB group bacteria. The high biocompatibility, electrical conductivity and stability of nitinols make them a more attractive anode material for MFCs.


Subject(s)
Alloys/pharmacology , Bioelectric Energy Sources , Electrodes , Bacterial Adhesion , Biofilms , Denaturing Gradient Gel Electrophoresis/methods , Dielectric Spectroscopy , Electric Conductivity , Microscopy, Electron, Scanning , Polymerase Chain Reaction/methods , Proteobacteria/classification , Proteobacteria/physiology , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...