Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J R Soc Interface ; 18(177): 20200920, 2021 04.
Article in English | MEDLINE | ID: mdl-33906382

ABSTRACT

Spaceflight is known to cause ophthalmic changes in a condition known as spaceflight-associated neuro-ocular syndrome (SANS). It is hypothesized that SANS is caused by cephalad fluid shifts and potentially mild elevation of intracranial pressure (ICP) in microgravity. Head-down tilt (HDT) studies are a ground-based spaceflight analogue to create cephalad fluid shifts. Here, we developed non-invasive magnetic resonance imaging (MRI)-based techniques to quantify ophthalmic structural changes under acute 15° HDT. We specifically quantified: (i) change in optic nerve sheath (ONS) and optic nerve (ON) cross-sectional area, (ii) change in ON deviation, an indicator of ON tortuosity, (iii) change in vitreous chamber depth, and (iv) an estimated ONS Young's modulus. Under acute HDT, ONS cross-sectional area increased by 4.04 mm2 (95% CI 2.88-5.21 mm2, p < 0. 000), while ON cross-sectional area remained nearly unchanged (95% CI -0.12 to 0.43 mm2, p = 0.271). ON deviation increased under HDT by 0.20 mm (95% CI 0.08-0.33 mm, p = 0.002). Vitreous chamber depth decreased under HDT by -0.11 mm (95% CI -0.21 to -0.03 mm, p = 0.009). ONS Young's modulus was estimated to be 85.0 kPa. We observed a significant effect of sex and BMI on ONS parameters, of interest since they are known risk factors for idiopathic intracranial hypertension. The tools developed herein will be useful for future analyses of ON changes in various conditions.


Subject(s)
Head-Down Tilt , Weightlessness , Healthy Volunteers , Humans , Magnetic Resonance Imaging , Weightlessness Simulation
2.
Eye (Lond) ; 35(7): 1869-1878, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33514895

ABSTRACT

BACKGROUND/OBJECTIVES: Spaceflight associated neuro-ocular syndrome (SANS), a health risk related to long-duration spaceflight, is hypothesized to result from a headward fluid shift that occurs with the loss of hydrostatic pressure gradients in weightlessness. Shifts in the vascular and cerebrospinal fluid compartments alter the mechanical forces at the posterior eye and lead to flattening of the posterior ocular globe. The goal of the present study was to develop a method to quantify globe flattening observed by magnetic resonance imaging after spaceflight. SUBJECTS/METHODS: Volumetric displacement of the posterior globe was quantified in 10 astronauts at 5 time points after spaceflight missions of ~6 months. RESULTS: Mean globe volumetric displacement was 9.88 mm3 (95% CI 4.56-15.19 mm3, p < 0.001) on the first day of assessment after the mission (R[return]+ 1 day); 9.00 mm3 (95% CI 3.73-14.27 mm3, p = 0.001) at R + 30 days; 6.53 mm3 (95% CI 1.24-11.83 mm3, p < 0.05) at R + 90 days; 4.45 mm3 (95% CI -0.96 to 9.86 mm3, p = 0.12) at R + 180 days; and 7.21 mm3 (95% CI 1.82-12.60 mm3, p < 0.01) at R + 360 days. CONCLUSIONS: There was a consistent inward displacement of the globe at the optic nerve, which had only partially resolved 1 year after landing. More pronounced globe flattening has been observed in previous studies of astronauts; however, those observations lacked quantitative measures and were subjective in nature. The novel automated method described here allows for detailed quantification of structural changes in the posterior globe that may lead to an improved understanding of SANS.


Subject(s)
Space Flight , Weightlessness , Astronauts , Humans , Intracranial Pressure , Magnetic Resonance Imaging , Weightlessness/adverse effects
3.
NPJ Microgravity ; 6: 30, 2020.
Article in English | MEDLINE | ID: mdl-33083526

ABSTRACT

A subset of long-duration spaceflight astronauts have experienced ophthalmic abnormalities, collectively termed spaceflight-associated neuro-ocular syndrome (SANS). Little is understood about the pathophysiology of SANS; however, microgravity-induced alterations in intracranial pressure (ICP) due to headward fluid shifts is the primary hypothesized contributor. In particular, potential changes in optic nerve (ON) tortuosity and ON sheath (ONS) distension may indicate altered cerebrospinal fluid dynamics during weightlessness. The present longitudinal study aims to provide a quantitative analysis of ON and ONS cross-sectional areas, and ON deviation, an indication of tortuosity, before and after spaceflight. Ten astronauts undergoing ~6-month missions on the International Space Station (ISS) underwent high-resolution magnetic resonance imaging (MRI) preflight and at five recovery time points extending to 1 year after return from the ISS. The mean changes in ON deviation, ON cross-sectional area, and ONS cross-sectional area immediately post flight were -0.14 mm (95% CI: -0.36 to 0.08, Bonferroni-adjusted P = 1.00), 0.13 mm2 (95% CI -0.66 to 0.91, Bonferroni-adjusted P = 1.00), and -0.22 mm2 (95% CI: -1.78 to 1.34, Bonferroni-adjusted P = 1.00), respectively, and remained consistent during the recovery period. Terrestrially, ONS distension is associated with increased ICP; therefore, these results suggest that, on average, ICP was not pathologically elevated immediately after spaceflight. However, a subject diagnosed with optic disc edema (Frisen Grade 1, right eye) displayed increased ONS area post flight, although this increase is relatively small compared to clinical populations with increased ICP. Advanced quantitative MRI-based assessment of the ON and ONS could help our understanding of SANS and the role of ICP.

4.
J Mech Behav Biomed Mater ; 110: 103924, 2020 10.
Article in English | MEDLINE | ID: mdl-32957219

ABSTRACT

The optic nerve sheath (ONS) is biomechanically important. It is acted on by tension due to ocular movements, and by fluid shifts and/or alterations in intracranial pressure (ICP) in human disease, specifically in pathologies leading to intracranial hypertension. It has also been hypothesized that the ONS is acted on by altered ICP in astronauts exposed chronically to microgravity. However, a non-invasive method to quantify ONS biomechanical properties is not presently available; knowledge of such properties is desirable to allow characterization of the biomechanical forces exerted on the optic nerve head and other ocular structures due to the ONS. Thus, the primary objective of this study was to characterize the biomechanical properties (stiffness) of the human ONS in vivo as a necessary step towards investigating the role of ICP in various conditions, including Spaceflight Associated Neuro-ocular Syndrome (SANS). We acquired non-invasive magnetic resonance imaging (MRI) scans of ostensibly healthy subjects (n = 18, age = 30.4 ± 11.6 [mean ± SD] years) during supine and 15-degree head-down-tilt (HDT) postures, and extracted ONS contours from these scans. We then used finite element modeling to quantify ONS expansion due to postural changes and an inverse approach to estimate ONS stiffness. Using this non-invasive procedure, we estimated an in vivo ONS stiffness of 39.2 ± 21.9 kPa (mean ± SD), although a small subset of individuals had very stiff ONS that precluded accurate estimates of their stiffness values. ONS stiffness was not correlated with age and was higher in males than females.


Subject(s)
Intracranial Hypertension , Intracranial Pressure , Adolescent , Adult , Female , Finite Element Analysis , Humans , Magnetic Resonance Imaging , Male , Optic Nerve/diagnostic imaging , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL