Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters










Publication year range
1.
Food Chem ; 451: 139531, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38704992

ABSTRACT

Winemaking production is old knowledge of the combination of saccharification and fermentation processes. During the fermentation process, ethanol concentration is one of the main key parameters that provides the quality of wine and is linked to the consumption of carbohydrates present in wine. In this work was determined the better fermentation time, where the wine retains its highest concentration of ethanol and a higher concentration of the polysaccharides of Bordo wine of Vitis labrusca by 1D and 2D NMR measurements. The study provides information on the polysaccharide content for improving features and quality control of winemaking. Moreover, following previous studies by our group (de Lacerda Bezerra et al., 2018, de Lacerda Bezerra, Caillot, de Oliveira, Santana-Filho, & Sassaki, 2019; Stipp et al., 2023) showed that the soluble polysaccharides also inhibited the production of inflammatory cytokines (TNF-α and IL-1ß) and mediator (NO) in macrophage cells stimulated with LPS, bringing some important health benefits of wine.

2.
Int J Biol Macromol ; 262(Pt 2): 130121, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38350588

ABSTRACT

This study identified a rhamnose-containing cell wall polysaccharide (RhaCWP) in an alkaline extract prepared to analyze intracellular polysaccharides (IPS) from Streptococcus mutans biofilm. IPS was an 1,4-α-D-glucan with branchpoints introduced by 1,6-α-glucan while RhaCWP presented 1,2-α-L-and 1,3-α-L rhamnose backbone and side chains connected by 1,2-α-D-glucans, as identified by nuclear magnetic resonance (NMR) spectroscopy and methylation analyses. The MW of IPS and RhaCWP was 11,298 Da, as determined by diffusion-ordered NMR spectroscopy. Therefore, this study analyzed the chemical structure of RhaCWP and IPS from biofilm in a single fraction prepared via a convenient hot-alkali extraction method. This method could be a feasible approach to obtain such molecules and improve the comprehension of the structure-function relationships in polymers from S. mutans in future studies.


Subject(s)
Rhamnose , Streptococcus mutans , Rhamnose/analysis , Polysaccharides/analysis , Glucans/chemistry , Cell Wall/chemistry
3.
Int J Biol Macromol ; 257(Pt 1): 128612, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38070366

ABSTRACT

Eucalypt kraft lignin isolated in a LignoBoost™ pilot plant was characterized by GC-MS, ICP-OES, DSC, HPSEC, 31P NMR, and HSQC 2D-NMR to be used without any further processing to produce lignin nanoparticles (LNPs) by nanoprecipitation. Tetrahydrofuran (THF) was used as a solvent, and water as a non-solvent. Microscopic analysis (TEM) showed that LNPs were regularly spherical with some hollow particles dispersed in-between, and sizes were tunable by changing the solvent dripping rate onto the non-solvent. LNP particle sizes had a bimodal distribution, with the largest population having an average apparent hydrodynamic diameter ranging from 105.6 to 75.6 nm. Colloidal dispersions of LNPs in water presented good stability in different dilutions without significant size changes upon storage at pH close to neutral for as long as 45 days. Zeta potentials around -40 mV were obtained for LNP suspensions at pH ranging from 7 to 9. The high carbohydrate content (circa 10 % on a dry basis, mostly xylans) of the lignin precursor did not interfere in LNP formation, whose antioxidant activity was expressive as demonstrated by the ABTS assay at pH 7.4, with an EC50 of 4.04 µg mL-1. Also, the Trolox® equivalent antioxidant capacity (TEAC) of LNPs reached 1.90 after 40 min reaction time.


Subject(s)
Antioxidants , Nanoparticles , Antioxidants/chemistry , Lignin/chemistry , Nanoparticles/chemistry , Solvents , Water
4.
Talanta ; 270: 125501, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38091749

ABSTRACT

Biocatalytic processes play a crucial role in the valorization of lignin; therefore, methods enabling the monitoring of enzymes such as ß-etherases, capable of breaking ß-O-4 aryl-ether bonds, are of significant biotechnological interest. A novel method for quantifying ß-etherase activity was developed based on the ß-ester bond formation between a chromophore and acetovainillone. The chromogenic substrate ß-(ρ-nitrophenoxy)-α-acetovanillone (PNPAV), was chemically synthesized. Kintetic monitoring of ρ-nitrophenolate release at 410 nm over 10 min, using recombinant LigF from Sphingobium sp SYK-6, LigF-AB and LigE-AB from Althererytrobacter sp B11, yielded enzimatic activities of 404. 3 mU/mg, 72 mU/mg, and 50 mU/mg, respectively. This method is applicable in a pH range of 7.0-9.0, with a sensitivity of up to 50 ng of enzyme, exhibiting no interference with lipolytic, glycolytic, proteolytic, and oxidoreductase enzymes.


Subject(s)
Chromogenic Compounds , Sphingomonadaceae , Oxidoreductases/chemistry , Bacterial Proteins/chemistry , Lignin/chemistry
5.
Int J Biol Macromol ; 259(Pt 1): 129108, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38158055

ABSTRACT

ß-D-glucan has significant implications in regulating lipid metabolism and preventing diseases associated with lipid accumulation. Schizophyllan (SPG) from Schizophyllum commune fungus is a commercially important ß-glucan with applications in the health food industry, pharmacy, and cosmetics. However, SPG was obtained by submerged culture of the wood-rotting and filamentous fungus S. commune BRM 060008, which may have been isolated from the Cerrado Biome of Brazil. In this study, to confirm that the polysaccharide produced by BRM 060008 strain fermentation was indeed (1→3)(1→6)-ß-D-glucan, it was purified and characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, high-performance size exclusion chromatography, nuclear magnetic resonance, and methylation analysis. The polysaccharide produced was identified as the ß-D-glucan expected with a high molecular weight (1.093 × 106 g/mol) and the thermogravimetric analysis indicated a maximum degradation temperature of ~324 °C and a 60 % residual weight, lower than commercial SPG. The molecular structure and thermal properties of the ß-D-glucan were similar to the commercial sample. Additionally, the in vitro pancreatic lipase inhibitory activity was evaluated, investigating anti-obesity and anti-lipidemic properties. The results showed unprecedented lipase inhibition activity to SPG prepared using the S. commune strain BRM 060008, making it promising for food and pharmaceutical applications.


Subject(s)
Schizophyllum , Sizofiran , Sizofiran/pharmacology , Sizofiran/chemistry , Schizophyllum/metabolism , Glucans/metabolism , Lipase/metabolism , Polysaccharides/metabolism
6.
Carbohydr Polym ; 321: 121333, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37739546

ABSTRACT

Halophilic archaea are capable of producing fructans, which are fructose-based polysaccharides. However, their biochemical characterization and biological and technological properties have been scarcely studied. The aim of this study was to evaluate the production, chemical characterization, biological and technological properties of a fructan inulin-type biosynthesized by a halophilic archaeon. Fructan extraction was performed through ethanol precipitation and purification by diafiltration. The chemical structure was elucidated using Fourier Transform-Infrared Spectroscopy and Nuclear Magnetic Resonance (NMR). Haloarcula sp. M1 biosynthesizes inulin with an average molecular weight of 8.37 × 106 Da. The maximal production reached 3.9 g of inulin per liter of culture within seven days. The glass transition temperature of inulin was measured at 138.85 °C, and it exhibited an emulsifying index of 36.47 %, which is higher than that of inulin derived from chicory. Inulin from Haloarcula sp. M1 (InuH) demonstrates prebiotic capacity. This study represents the first report on the biological and technological properties of inulin derived from halophilic archaea.


Subject(s)
Cichorium intybus , Haloarcula , Inulin , Fructans , Ethanol
7.
Mar Drugs ; 21(7)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37504919

ABSTRACT

A blend refers to the combination of two or more components to achieve properties that are superior to those found in the individual products used for their production. Gracilaria birdiae agaran (SPGb) and chromium picolinate (ChrPic) are both antioxidant agents. However, there is no documentation of blends that incorporate agarans and ChrPic. Hence, the objective of this study was to generate blends containing SPGb and ChrPic that exhibit enhanced antioxidant activity compared to SPGb or ChrPic alone. ChrPic was commercially acquired, while SPGb was extracted from the seaweed. Five blends (B1; B2; B3; B4; B5) were produced, and tests indicated B5 as the best antioxidant blend. B5 was not cytotoxic or genotoxic. H2O2 (0.6 mM) induced toxicity in fibroblasts (3T3), and this effect was abolished by B5 (0.05 mg·mL-1); neither ChrPic nor SPGb showed this effect. The cells also showed no signs of toxicity when exposed to H2O2 after being incubated with B5 and ChrPic for 24 h. In another experiment, cells were incubated with H2O2 and later exposed to SPGb, ChrPic, or B5. Again, SPGb was not effective, while cells exposed to ChrPic and B5 reduced MTT by 100%. The data demonstrated that B5 has activity superior to SPGb and ChrPic and points to B5 as a product to be used in future in vivo tests to confirm its antioxidant action. It may also be indicated as a possible nutraceutical agent.


Subject(s)
Gracilaria , Rhodophyta , Seaweed , Antioxidants/pharmacology , Hydrogen Peroxide/pharmacology , Vegetables
8.
Molecules ; 28(7)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37049845

ABSTRACT

Oreochromis niloticus (tilapia) is one of the most cultivated fish species worldwide. Tilapia farming generates organic waste from fish removal processes in nurseries. Visceral waste can damage natural ecosystems. Therefore, the use of this material as a source of biomolecules helps reduce environmental impacts and improve pharmacological studies. Tilapia viscera were subjected to proteolysis and complexation with an ion-exchange resin. The obtained glycosaminoglycans were purified using ion exchange chromatography (DEAE-Sephacel). The electrophoretic profile and analysis of 1H/13C nuclear magnetic resonance (NMR) spectra allowed for the characterization of the compound as chondroitin sulfate and its sulfation position. This chondroitin was named CST. We tested the ability of CST to reduce leukocyte influx in acute peritonitis models induced by sodium thioglycolate and found a significant reduction in leukocyte migration to the peritoneal cavity, similar to the polymorphonuclear population of the three tested doses of CST. This study shows, for the first time, the potential of CST obtained from O. niloticus waste as an anti-inflammatory drug, thereby contributing to the expansion of the study of molecules with pharmacological functions.


Subject(s)
Cichlids , Peritonitis , Tilapia , Animals , Chondroitin Sulfates , Ecosystem , Peritonitis/chemically induced , Peritonitis/drug therapy
9.
Int J Biol Macromol ; 240: 124385, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37060983

ABSTRACT

The soluble fraction of polysaccharides from cabernet franc red wine (SFP) previously showed antitumoral effects by modulating the immune system. The present study tested the hypothesis that the SFP can regulate CYPs in vitro in HepG2 cells and in vivo in Walker-256 tumor-bearing rats. The SFP was used in the following protocols: (i) solid tumor, (ii) liquid tumor, and (iii) chemopreventive solid tumor. The SFP reduced solid tumor growth in both solid tumor protocols but did not inhibit liquid tumor development. The SFP reduced total CYP levels in the solid and liquid tumor protocols and reduced the gene expression of Cyp1a1 and Cyp2e1 in rats and CYP1A2 in HepG2 cells. An increase of N-acetylglucosaminidase activity was observed in all SFP-treated rats, and TNF-α levels increased in the solid tumor protocol in the vehicle, SFP, and vincristine (positive control) groups. The chemopreventive solid tumor protocol did not modify CYP levels in the liver or intestine or N-acetylglucosaminidase and myeloperoxidase activity in the liver. The in vitro digestion and nuclear magnetic resonance analyses suggested that SFP was minimally modified in the gastrointestinal system. In conclusion, SFP inhibited CYPs both in vivo and in vitro, likely as a result of its immunoinflammatory actions.


Subject(s)
Wine , Rats , Animals , Acetylglucosaminidase , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Polysaccharides/pharmacology
10.
J Pharm Biomed Anal ; 229: 115339, 2023 May 30.
Article in English | MEDLINE | ID: mdl-36963247

ABSTRACT

Chronic kidney disease (CKD) is a serious public health issue affecting thousands of people worldwide. CKD diagnosis is usually made by Estimated Glomerular Filtration Rate (eGFR) and albuminuria, which limit the knowledge of the mechanisms behind CKD progression. The aim of the present study was to identify changes in the metabolomic profile that occur as CKD advances. In this sense, 77 plasma samples from patients with CDK were evaluated by 1D and 2D Nuclear Magnetic Resonance Spectroscopy (NMR). The NMR data showed significant changes in the metabolomic profile of CKD patients and the control group. Principal component analysis (PCA) clustered CKD and control patients into three distinct groups, control, stage 1 (G1)-stage 4 (G4) and stage 5 (G5). Lactate, glucose, acetate and creatinine were responsible for discriminating the control group from all the others CKD stages. Valine, alanine, glucose, creatinine, glutamate and lactate were responsible for the clustering of G1-G4 stages. G5 was discriminated by calcium ethylenediamine tetraacetic acid, magnesium ethylenediamine tetraacetic acid, creatinine, betaine/choline/trimethylamine N-oxide (TMAO), lactate and acetate. CKD G5 plasma pool which was submitted in MetaboAnalyst 4.0 platform (MetPA) analysis and showed 13 metabolic pathways involved in CKD physiopathology. Metabolic changes associated with glycolysis and gluconeogenesis allowed discriminating between CKD and control patients. The determination of involved molecules in TMAO generation in G5 suggests an important role in this uremic toxin linked to CKD and cardiovascular diseases. The aforementioned results propose the feasibility of metabolic assessment of CKD by NMR during treatment and disease progression.


Subject(s)
Renal Insufficiency, Chronic , Humans , Proton Magnetic Resonance Spectroscopy , Creatinine , Renal Insufficiency, Chronic/diagnosis , Magnetic Resonance Spectroscopy , Lactates , Ethylenediamines
11.
J Nutr Biochem ; 113: 109253, 2023 03.
Article in English | MEDLINE | ID: mdl-36565967

ABSTRACT

The present study characterized oligosaccharide compounds (Oligo) in Cabernet Franc red wine and investigated its antineoplastic effects against mammary tumor cells in vivo and in vitro, isolated or in combination with chemotherapy. The Oligo fraction was characterized by nuclear magnetic resonance spectroscopy and mass spectrometry. The complex mixture of Oligo showed high amounts of oligoxyloglucuronans, oligorhamnogalacturonans, oligoarabinogalactans, and oligoglucans, such as trehalose and isomaltotriose. To investigate the antineoplastic effects of Oligo, Female Swiss mice were subcutaneously inoculated with Ehrlich tumor cells and then received vehicle (distilled water, p.o.), Oligo solution (9, 35, or 70 mg/kg, p.o.), or methotrexate (1.5 mg/kg, i.p.). The treatments were administered in a conventional (21-d) or chemopreventive (42-d) protocol. Oligo reduced the growth of Ehrlich tumors in both protocols and increased the effectiveness of methotrexate in controlling tumor growth. Oligo did not reduce the viability of MCF-7, MDA-MB-231, MDA-MB-436, and HB4a human breast cells that were cultured for 48 h, showing no cytotoxicity. Overall, Oligo exerted an in vivo antineoplastic effect and modulated immune blood cells, dependent on treatment time, and was not directly cytotoxic to tumor cells. Thus, Oligo may indirectly regulate tumor cell development and may be a promising drug for cancer therapy in combination with methotrexate.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Mammary Neoplasms, Animal , Wine , Mice , Female , Humans , Animals , Methotrexate/pharmacology , Methotrexate/therapeutic use , Methotrexate/analysis , Wine/analysis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Oligosaccharides/pharmacology , Oligosaccharides/therapeutic use , Oligosaccharides/analysis , Breast Neoplasms/drug therapy
12.
Carbohydr Polym ; 294: 119823, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35868772

ABSTRACT

A fucoxylomannan (FXM) was isolated from the mushroom Ganoderma lucidum through alkaline extraction followed by dialysis, freeze-thawing, and fractionation by Fehling's solution. The main chain of FXM presented α-d-Manp-(1→4)-linked units, and some of them were branched at O-6 position by α-l-Fucp-(1→2)-ß-d-Xylp groups. Its Mw was 35.9 kDa. FXM was tested on melanoma B16-F10 cells and it showed cell viability and cell density reduction, as well as antiproliferative effect, through cell cycle arrest. Additionally, the anchorage-independent clonogenic capacity of such cells was significantly reduced by FXM, decreasing the number of cells by colony and the colonies area. No effect on viability neither in proliferation of non-tumoral Balb c/3T3 fibroblasts was observed. These results indicate that FXM is a promising anti-proliferative compound impairing pivotal tumorigenic mechanisms, eliciting this polysaccharide to be further explored as an antimelanoma drug.


Subject(s)
Agaricales , Ganoderma , Reishi , Fruiting Bodies, Fungal , Polysaccharides/pharmacology , Renal Dialysis
13.
Int J Biol Macromol ; 207: 893-904, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35358579

ABSTRACT

Hemicellulose-type polysaccharides were isolated from Campomanesia xanthocarpa fruits by alkaline extraction and submitted to fractionation processes giving rise to eluted (GE-300) and retained (GR-300) fractions. GE-300 presented a mixture of galactoglucomannans (GGM) and glucuronoxylans (MGX), while the GR-300 fraction is composed only of MGX. In this way, the chemical structure of MGX, investigated by 1D 1H, 13C and 2D 1H-13C HSQC, 1H-1H COSY and 1H-13C HMBC NMR spectroscopy, revealed that the chemical structure of polysaccharide is a (4-O-methyl-α-D-glucurono)-D-xylan. Deep and precise NMR chemical shift determination of clean and specific 1H NMR glycosyl units were developed by 1D TOCSY and 1D NOESY analysis. This approach demonstrated unequivocally that 4-O-methyl-α-D-glucopyranosyl uronic acid group is linked to O-2 of a (1 â†’ 4)-ß-D-xylan in the main chain. Furthermore, MGX scavenged DPPH radical (0.5 to 1.0 mg mL-1) and was not cytotoxic to human dermal fibroblasts at concentrations up to 1.0 mg mL-1, as demonstrated by neutral red and crystal violet assays, evidencing in vitro biocompatibility. The structure elucidation of GR-300 together with its bioactivity assessment contributed to better understand the chemical characteristics of C. xanthocarpa hemicelluloses and may provide structural basis for future structure-property studies.


Subject(s)
Fruit , Myrtaceae , Fruit/chemistry , Humans , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Myrtaceae/chemistry , Xylans
14.
J Pharm Biomed Anal ; 208: 114460, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-34773837

ABSTRACT

Uremic toxins (UTs) accumulate in the circulation of patients with chronic kidney disease (CKD). High volume hemodiafiltration (HDF) improves clearance of low and medium molecular weight UTs compared to HD. The present study is a post-hoc analysis comparing the metabolomic profile in serum from patients under high flux HD (hf-HD) and HDF in HDFIT, a multicentric randomized controlled trial (RCTs). Per protocol, serum samples were collected pre- and post- dialysis treatments at randomization (baseline) and at the end of the follow up (6 months) and stored in a biorepository. Random (pre- and post-dialysis) samples from nine patients in study arm were selected at baseline and at the end of the follow up. To compare the samples, 26 possibly matching metabolites were identified by a t-test among the four groups using 1H nuclear magnetic resonance (NMR). To evaluate the comparison between the modalities is a single treatment session, the clearance rates (CRs) of each metabolite were calculated based on pre-dialysis and post-dialysis samples. In addition, to evaluate to effect of UT removal during the trial follow up period, the pre-dialysis metabolite concentrations at the baseline and at 6 months were compared among the two arms of the study. There was no significant difference between in the single session CRs of metabolites when hf-HD and HDF were compared. On the other hand, the comparison between baseline and 6-month (long-term evolution) led to the identification of 16 metabolites that differentiated the hf-HD and the HDF evolutions. Most of these 16 metabolites are involved in several important metabolic pathways, such as metabolism of phenylalanine and biosynthesis of phenylalanine, tyrosine, and tryptophan, which are related to UTs and cardiovascular disease development. Although no difference was observed between hf-HD and HDF samples before and after a single session, concentrations of CKD-relevant metabolites and associated pathologies were stable in the HDF samples, but not in the hf-HD samples, over the six-month period, suggesting that HDF enhances long-term stability.


Subject(s)
Hemodiafiltration , Kidney Failure, Chronic , Humans , Magnetic Resonance Spectroscopy , Metabolomics , Renal Dialysis , Uremic Toxins
15.
Carbohydr Polym ; 274: 118647, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34702466

ABSTRACT

Polysaccharides α-D-galactan (GAL-Am) and ß-D-glucan (GLC-Am) were obtained from Amanita muscaria fruiting bodies. They were purified using different methodologies, such as Fehling precipitation (for both fractions), freeze-thawing process and ultrafiltration (for GLC-Am). Results showed that the GAL-Am has (1 â†’ 6)-linked Galp main chain branched at O-2 by terminal Galp units and has not been previously reported. Besides, GLC-Am has (1 â†’ 3)-linked Glcp in the main chain, substituted at O-6 by (1 â†’ 6)-linked ß-Glcp units. Both are water-soluble, with 9.0 × 103 g/moL and 1.3 × 105 g/moL, respectively. GAL-Am and GLC-Am presented a selective proliferation reduction against B16-F10 melanoma cell line, not affecting non tumoral BALB/3T3 fibroblast cell line. Furthermore, both fractions reduced clonogenic capacity of melanoma cell line over an extended period of time. These results were obtained without modulations in B16-F10 cell adhesion, reinforcing the biological activities towards cell proliferation impairment and eliciting these polysaccharides as promising compounds to further exploration of their antimelanoma properties.


Subject(s)
Amanita/metabolism , Antineoplastic Agents , Galactans , Glucans , Melanoma, Experimental/drug therapy , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , BALB 3T3 Cells , Cell Proliferation/drug effects , Galactans/chemistry , Galactans/pharmacology , Glucans/chemistry , Glucans/pharmacology , Mice
16.
J Fungi (Basel) ; 7(10)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34682234

ABSTRACT

Oxidative stress is the cause of numerous diseases in humans; therefore, there has been a continuous search for novel antioxidant molecules. Fungal chitosan is an attractive molecule that has several applications (antifungal, antibacterial, anticancer and antiparasitic action) owing to its unique characteristics; however, it exhibits low antioxidant activity. The aim of this study was to obtain fungal chitosan (Chit-F) from the fungus Rhizopus arrhizus and synthesize its derivative, fungal chitosan-gallic acid (Chit-FGal), as a novel antioxidant chitosan derivative for biomedical use. A low molecular weight Chi-F (~3.0 kDa) with a degree of deacetylation of 86% was obtained from this fungus. Chit-FGal (3.0 kDa) was synthesized by an efficient free radical-mediated method using hydrogen peroxide (H2O2) and ascorbic acid. Both Chit-F and Chit-FGal showed similar copper chelating activities; however, Chit-FGal was more efficient as an antioxidant, exhibiting twice the total antioxidant capacity than Chi-F (p < 0.05). Furthermore, H2O2 (0.06 M) promoted a 50% decrease in the viabilities of the 3T3 fibroblast cells. However, this effect was abolished in the presence of Chit-FGal (0.05-0.25 mg/mL), indicating that Chit-FGal protected the cells from oxidative damage. These results suggest that Chit-FGal may be a promising agent to combat oxidative stress.

17.
J Ethnopharmacol ; 265: 113348, 2021 Jan 30.
Article in English | MEDLINE | ID: mdl-32896626

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The species Euphorbia umbellata (leitosinha) has been traditionally used for the treatment of inflammatory diseases and cancer. AIM OF THE STUDY: Evaluation the effect of E. umbellata latex extracts obtained with hexane, chloroform, ethyl acetate and methanol on the activation of the complement pathways and neutrophil chemotaxis. MATERIALS AND METHODS: The latex was partitioned using Soxhlet apparatus and hexane, chloroform, ethyl acetate and methanol as solvents. The classical and alternative pathway activity were performed by hemolytic assays with sensitized sheep or rabbit erythrocytes, respectively; the lectin pathway activity was quantified by ELISA, through the measurement of C4 molecules and the chemotaxis of human neutrophils was performed using 1% casein as the chemotactic inducer and Boyden's chamber. GC-Q-ToF and NMR analyses were applied to evaluate the chemical composition of E. umbellata latex extracts. RESULTS: All E. umbellata latex extracts exhibited an inhibitory effect on the activation of the alternative pathway. Methanol and ethyl acetate extracts inhibited the classical pathway while chloroform extract activated this pathway. Ethyl acetate and hexane extracts inhibited lectin activation. All E. umbellata extracts inhibited casein-induced neutrophil chemotaxis. Terpenes and phenolic compounds have been suggested to be present in the E. umbellta latex extracts. CONCLUSION: The E. umbellata latex was able to modulate the functions of the immune system. Thus, it is possible to infer that the terpenes and phenolic compounds of the phytocomplex of E. umbellata latex can contribute for the activity on the complement pathways.


Subject(s)
Complement Activation/drug effects , Euphorbia/chemistry , Neutrophils/drug effects , Plant Extracts/pharmacology , Animals , Chemotaxis/drug effects , Erythrocytes/drug effects , Hemolysis/drug effects , Humans , Phenols/isolation & purification , Phenols/pharmacology , Plant Extracts/chemistry , Rabbits , Sheep , Solvents/chemistry , Terpenes/isolation & purification , Terpenes/pharmacology
18.
Chem Biodivers ; 17(9): e2000369, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32644295

ABSTRACT

The current study was carried out by a bioguided fractionation of a hexane extract of the latex of Euphorbia umbellata against leukemic cells. Samples were analyzed by NMR, GC/MS, triterpenes quantification, and MTT reduction assay. Morphological, cell cycle, mitochondrial membrane potential and caspases 3/7 analyses were performed for the dichloromethane and ethanol fractions, and selectivity index for the dichloromethane fraction. NMR analysis presented characteristic signals of terpenes and steroids, data were confirmed by the quantification of triterpenes and GC/MS analysis. MTT reduction assay demonstrated that HL-60 was the most sensitive cell lineage against dichloromethane and ethanol fractions. Compounds of these matrices caused morphological changes compatible with apoptosis induction, altered cell cycle, increment of depolarized population cells and activation of caspases 3/7. Selectivity indices were higher than 22.44. Bioguided-fractionation study showed that samples of the latex of E. umbellata raised the activity of the phytocomplex against leukemic cells, and the cytotoxicity can be associated with an apoptosis pathway.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Euphorbia/chemistry , Latex/chemistry , Terpenes/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Cycle/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Terpenes/chemistry , Terpenes/isolation & purification , Tumor Cells, Cultured
19.
Appl Environ Microbiol ; 86(17)2020 08 18.
Article in English | MEDLINE | ID: mdl-32631857

ABSTRACT

Under conditions of carbon starvation or thermal, osmotic, or oxidative shock, mutants affected in the synthesis or mobilization of poly-3-hydroxybutyrate (PHB) are known to survive less well. It is still unclear if the synthesis and accumulation of PHB are sufficient to protect bacteria against stress conditions or if the stored PHB has to be mobilized. Here, we demonstrated that mobilization of PHB in Herbaspirillum seropedicae SmR1 was heat-shock activated at 45°C. In situ proton (1H) nuclear magnetic resonance spectroscopy (i.e., 1H-nuclear magnetic resonance) showed that heat shock increased amounts of 3-hydroxybutyrate (3HB) only in H. seropedicae strains able to synthesize and mobilize PHB. H. seropedicae SmR1 mutants unable to synthesize or mobilize PHB were more susceptible to heat shock and survived less well than the parental strain. When 100 mM 3-hydroxybutyrate was added to the medium, the ΔphaC1 strain (an H. seropedicae mutant unable to synthesize PHB) and the double mutant with deletion of both phaZ1 and phaZ2 (i.e., ΔphaZ1.2) (unable to mobilize PHB) showed partial rescue of heat adaptability (from 0% survival without 3HB to 40% of the initial viable population). Addition of 200 mM 3HB before the imposition of heat shock reduced protein aggregation to 15% in the ΔphaC1 mutant and 12% in the ΔphaZ1.2 mutant. We conclude that H. seropedicae SmR1 is naturally protected by 3HB released by PHB mobilization, while mutants unable to generate large amounts of 3HB under heat shock conditions are less able to cope with heat damage.IMPORTANCE Bacteria are subject to abrupt changes in environmental conditions affecting their growth, requiring rapid adaptation. Increasing the concentration of some metabolites can protect bacteria from hostile conditions that lead to protein denaturation and precipitation, as well as damage to plasma membranes. In this work, we demonstrated that under thermal shock, the bacterium Herbaspirillum seropedicae depolymerized its intracellular stock polymer known as poly-3-hydroxybutyrate (PHB), rapidly increasing the concentration of 3-hydroxybutyrate (3HB) and decreasing protein precipitation by thermal denaturation. Mutant H. seropedicae strains unable to produce or depolymerize PHB suffered irreparable damage during thermal shock, resulting in fast death when incubated at 45°C. Our results will contribute to the development of bacteria better adapted to high temperatures found either in natural conditions or in industrial processes. In the case of H. seropedicae and other bacteria that interact beneficially with plants, the understanding of PHB metabolism can be decisive for the development of more-competitive strains and their application as biofertilizers in agriculture.


Subject(s)
3-Hydroxybutyric Acid/metabolism , Heat-Shock Response , Herbaspirillum/physiology , Hydroxybutyrates/metabolism , Polyesters/metabolism , Protein Aggregates
20.
Mar Drugs ; 18(5)2020 Apr 29.
Article in English | MEDLINE | ID: mdl-32365741

ABSTRACT

Sulfated polysaccharides (SPs) obtained from green seaweeds are structurally heterogeneous molecules with multifunctional bioactivities. In this work, two sulfated and pyruvated galactans were purified from Caulerpa cupressoides var. flabellata (named SP1 and SP2), and their immunostimulatory effect was evaluated using cultured murine macrophage cells. Both SPs equally increased the production of nitric oxide, reactive oxygen species, and the proinflammatory cytokines TNF-α and IL-6. NMR spectroscopy revealed that both galactans were composed primarily of 3)-ß-d-Galp-(1→3) units. Pyruvate groups were also found, forming five-membered cyclic ketals as 4,6-O-(1'carboxy)-ethylidene-ß-d-Galp residues. Some galactoses are sulfated at C-2. In addition, only SP2 showed some galactose units sulfated at C-4, indicating that sulfation at this position is not essential for the immunomodulatory activity of these galactans. Overall, the data showed that the galactans of C. cupressoides exhibited immunostimulating activity with potential therapeutic applications, which can be used in the development of new biomedical products.


Subject(s)
Adjuvants, Immunologic/metabolism , Caulerpa/metabolism , Galactans/metabolism , Macrophages/drug effects , Seaweed , Adjuvants, Immunologic/pharmacology , Animals , Cell Survival/drug effects , Cytokines/metabolism , Galactans/pharmacology , Macrophages/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...