Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nanophotonics ; 13(14): 2541-2551, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38836104

ABSTRACT

Optical control is achieved on the excited state energy transfer between spatially separated donor and acceptor molecules, both coupled to the same optical mode of a cavity. The energy transfer occurs through the formed hybrid polaritons and can be switched on and off by means of ultraviolet and visible light. The control mechanism relies on a photochromic component used as donor, whose absorption and emission properties can be varied reversibly through light irradiation, whereas in-cavity hybridization with acceptors through polariton states enables a 6-fold enhancement of acceptor/donor contribution to the emission intensity with respect to a reference multilayer. These results pave the way for synthesizing effective gating systems for the transport of energy by light, relevant for light-harvesting and light-emitting devices, and for photovoltaic cells.

2.
Langmuir ; 39(9): 3266-3272, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36812106

ABSTRACT

The ability to control the properties of organic thin films is crucial for obtaining highly performant thin-film devices. However, thin films may experience post-growth processes, even when the most sophisticated and controlled growth techniques such as organic molecular beam epitaxy (OMBE) are used. Such processes can modify the film structure and morphology and, thus, the film properties ultimately affecting device performances. For this reason, probing the occurrence of post-growth evolution is essential. Equally importantly, the processes responsible for this evolution should be addressed in view of finding a strategy to control and, possibly, leverage them for driving film properties. Here, nickel-tetraphenylporphyrin (NiTPP) thin films grown by OMBE on highly oriented pyrolytic graphite (HOPG) are selected as an exemplary system exhibiting a remarkable post-growth morphology evolution consistent with Ostwald-like ripening. To quantitatively describe the growth, the height-height correlation function (HHCF) analysis of the atomic force microscopy (AFM) images is carried out, clarifying the role of the post-growth evolution as an integral part of the whole growth process. The set of scaling exponents obtained confirms that the growth is mainly driven by diffusion combined with the presence of step-edge barriers, in agreement with the observed ripening phenomenon. Finally, the results together with the overall approach adopted demonstrate the reliability of the HHCF analysis in systems displaying post-growth evolution.

3.
Gels ; 7(3)2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34449612

ABSTRACT

Copper complexes with different ligands (ethylenediaminetetraacetic acid, EDTA, ammonium citrate tribasic, TAC, and alanine, ALA) were studied in aqueous solutions and hydrogels with the aim of setting the optimal conditions for copper stain removal from marble by agar gels, with damage minimization. The stoichiometry and stability of copper complexes were monitored by ultraviolet-visible (UV-Vis) spectroscopy and the symmetry of Cu(II) centers in the different gel formulations was studied by electron paramagnetic resonance (EPR) spectroscopy. Cleaning effectiveness in optimized conditions was verified on marble laboratory specimens through color variations and by determining copper on gels by inductively coupled plasma-mass spectrometry (ICP-MS). Two copper complexes with TAC were identified, one having the known stoichiometry 1:1, and the other 1:2, Cu(TAC)2, never observed before. The stability of all the complexes at different pH was observed to increase with pH. At pH 10.0, the gel's effectiveness in removing copper salts from marble was the highest in the presence of ALA, followed by EDTA, TAC, and pure agar gel. Limited damage to the marble surface was observed when gels with added EDTA and TAC were employed, whereas agar gel with ALA was determined to be the most efficient and safe cleaning material.

4.
J Phys Chem Lett ; 12(2): 869-875, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33428409

ABSTRACT

The nature of optical excitations and the spatial extent of excitons in organic semiconductors, both of which determine exciton diffusion and carrier mobilities, are key factors for the proper understanding and tuning of material performances. Using a combined experimental and theoretical approach, we investigate the excitonic properties of meso-tetraphenyl porphyrin-Zn(II) crystals. We find that several bands contribute to the optical absorption spectra, beyond the four main ones considered here as the analogue to the four frontier molecular orbitals of the Gouterman model commonly adopted for the isolated molecule. By using many-body perturbation theory in the GW and Bethe-Salpeter equation approach, we interpret the experimental large optical anisotropy as being due to the interplay between long- and short-range intermolecular interactions. In addition, both localized and delocalized excitons in the π-stacking direction are demonstrated to determine the optical response, in agreement with recent experimental observations reported for organic crystals with similar molecular packing.

5.
Phys Chem Chem Phys ; 21(16): 8482-8488, 2019 Apr 17.
Article in English | MEDLINE | ID: mdl-30957123

ABSTRACT

Controlling self-organization of small organic molecules in nanostructures with a desired shape and size is one of the main challenges in organic nanoelectronics. Here, a strategy for selectively growing uniaxially aligned nanowires of meso-tetraphenyl porphyrin-Zn(ii) (ZnTPP) is presented. ZnTPP is deposited on an organic single crystal, namely potassium hydrogen phthalate, by organic molecular beam epitaxy. The films typically display a rather rich surface morphology, characterized by the presence of nanowires and other nm-sized aggregates, most of them unstable over time. Post-growth processes occurring via quasi-Ostwald ripening both in air and in vacuum demonstrate an aging protocol in vacuum as a tool for the selection of ZnTPP nanowires, whose morphology and uniaxial orientation are demonstrated to be led by organic epitaxy. The ability of growing ZnTPP nanowires with a unique crystal structure and precise orientation gives the chance to observe the intrinsic optical anisotropy of the triclinic polymorph of ZnTPP crystal and establishes the role of intermolecular interactions, providing new perspectives in the study of the intrinsic physical properties of ZnTPP crystals.

6.
Adv Mater ; 25(20): 2804-8, 2013 May 28.
Article in English | MEDLINE | ID: mdl-23568542

ABSTRACT

Organic droplet epitaxy is presented as a method for growing nanopatterned crystalline heterostructures, thanks to the transport of molecules of an amorphous first-layer on top of a crystalline second-layer, where they form an epitaxial interface. Such heterostructures may be transferred to any substrates, raising particular interest for applications (e.g., for organic photovoltaics), where crystallinity and nanopatterning constitute well recognized advantages.


Subject(s)
Crystallization/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Organic Chemicals/chemistry , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
7.
J Chem Phys ; 137(22): 224703, 2012 Dec 14.
Article in English | MEDLINE | ID: mdl-23249022

ABSTRACT

The control of molecular orientation in thin solid film phases of organic semiconductors is a basic factor for the exploitation of their physical properties for optoelectronic devices. We compare structural and optical properties of thin films of the organic semiconductor α-quarterthiophene grown by molecular beam epitaxy on different organic substrates. We show how epitactic interactions, characteristic of the surface of organic crystals, can drive the orientation of the crystalline overlayer and the selection of specific polymorphs and new pseudomorphic phases. We identify a key role in this phenomenon played by the marked groove-like corrugations present in some organic crystal surfaces. Since different polymorphs possess rather different performance in terms of, e.g., charge carrier mobility, this strategy is demonstrated to allow for the growth of oriented phases with enhanced physical properties, while keeping the substrate at room temperature. These results provide useful guidelines for the design of technological substrates for organic epitaxy and they substantiate the adoption of an organic epitaxy approach for the fabrication of optoelectronic devices based on thin films of organic semiconductors.

8.
J Synchrotron Radiat ; 19(Pt 5): 682-7, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22898945

ABSTRACT

The growth of organic semiconductors as thin films with good and controlled electrical performances is nowadays one of the main tasks in the field of organic semiconductor-based electronic devices. In particular it is often required to grow highly crystalline and precisely oriented thin films. Here, thanks to grazing-incidence X-ray diffraction measurements carried out at the ELETTRA synchrotron facility, it is shown that rubrene thin films deposited by organic molecular beam epitaxy on the surface of tetracene single crystals have the structure of the known orthorhombic polymorph, with the (2 0 0) plane parallel to the substrate surface. Moreover, the exact epitaxial relationship between the film and the substrate crystalline structures is determined, demonstrating the presence of a unique in-plane orientation of the overlayer.

9.
J Am Chem Soc ; 128(41): 13378-87, 2006 Oct 18.
Article in English | MEDLINE | ID: mdl-17031949

ABSTRACT

Hot-wall epitaxy and molecular-beam epitaxy have been employed for growing quaterthiophene thin films on the (010) cleavage face of potassium hydrogen phthalate, and the results are compared in terms of film properties and growth mode. Even if there is no geometrical match between substrate and overlayer lattices, these films are epitaxially oriented. To investigate the physical rationale for this strong orientation effect, optical microscopy, atomic force microscopy, and X-ray diffraction are employed. A clear correlation between the morphology of the thin films and the crystallographic orientation is found. The results are also validated by surface potential calculations, which demonstrate the primary role played by the corrugation of the substrate surface.

10.
J Phys Chem B ; 109(16): 7859-64, 2005 Apr 28.
Article in English | MEDLINE | ID: mdl-16851915

ABSTRACT

Growth studies of ultrahigh vacuum deposited thin films are often carried out ex situ, assuming the total film mass reached at the end of the deposition is preserved in the subsequent stages of film preparation. Many kinetic models commonly adopted to analyze quantitatively the mechanism of growth take into account the role of the deposition rate of molecules on the substrate surface, their diffusion, and their possible desorption. Within this framework, a strong simplification (and approximation) of the model is achieved when considering a regime of complete condensation (i.e., neglecting the possibility of re-evaporation of the deposited molecules, both during the deposition and the postdeposition stages of growth). Here, we demonstrate that, for molecular materials of relatively small organic molecules physisorbed on inert surfaces, this phenomenon may strongly affect not only the surface dynamics during deposition but also the postdeposition stage of thin film preparation. Some examples showing clearly its effects on the surface of single crystals and the thin film phase are reported and discussed. Finally, a quantitative description of desorption is provided by comparing the prediction of thermodynamics for the quaterthiophene/silica system with the experimental observation of the growth dynamics of the film and the results of approximate kinetic models. The thermodynamic model employs the surface free energies of a quaterthiophene crystal, which are evaluated by molecular simulation using a newly developed force field.

SELECTION OF CITATIONS
SEARCH DETAIL
...