Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Harmful Algae ; 129: 102530, 2023 11.
Article in English | MEDLINE | ID: mdl-37951625

ABSTRACT

Domoic acid, a phycotoxin produced by species of the marine diatom Pseudo-nitzschia, can cause deleterious impacts to marine food webs and human health. Domoic acid and Pseudo-nitzschia spp. were surveyed from 2016 to 2021 in the Pacific waters of Canada to assess their occurrences, concentrations, and relationships with physical and chemical conditions. Domoic acid was common, occurring in measurable concentrations in 73 % of the 454 samples. It occurred in all regions (west coast of Vancouver Island, Salish Sea, Queen Charlotte Sound / Hecate Strait, deep oceanic NE Pacific), in all years and all seasons. Median concentrations were highest along the west coast of Vancouver Island, and lowest in the oceanic waters of the NE Pacific. Winter had the lowest concentrations; no significant differences occurred between spring, summer, and autumn. High domoic acid concentrations equal to or above 100 ng/L were not common, occurring in about 5 % of samples, but in all seasons and all years except 2019. All six Pseudo-nitzschia taxa identified had similar median concentrations, but different frequencies of occurrence. P. cf. australis appeared to be the major contributor to high concentrations of domoic acid. Physico-chemical conditions were described by ten variables: temperature, salinity, density difference between 30 m and the surface (a proxy for vertical stability), chlorophyll a, nitrate, phosphate, silicate, and the ratios nitrate:phosphate, nitrate:silicate, and silicate:phosphate. Statistical analyses, using general linear models, of their relationships with the absence/presence of Pseudo-nitzschia spp. found silicate (negative) to be the most influential variable common in both the west coast of Vancouver Island and Salish Sea regions. Temperature and chlorophyll a were the most influential variables which determined the log10 abundance of Pseudo-nitzschia spp. in both regions. Analyses of the absence/presence of particulate domoic acid per Pseudo-nitzschia cell (excluding P. americana) found chlorophyll a to be the most influential variable common in both regions, whereas no common influential variable determined the log10 concentration of particulate domoic acid per Pseudo-nitzschia cell (excluding P. americana). These results were generally similar to those of other studies from this area, although this study extends these findings to all seasons and all regions of Canada's Pacific waters. The results provide important background information against which major outbreaks and unusual events can be compared. A domoic acid surveillance program during synoptic oceanographic surveys can help to understand where and when it reaches high concentrations at sea and the potential impacts to the marine ecosystem.


Subject(s)
Diatoms , Nitrates , Humans , Canada , Chlorophyll A , Ecosystem , Phosphates , Silicates
2.
ISME J ; 12(2): 485-494, 2018 02.
Article in English | MEDLINE | ID: mdl-29125596

ABSTRACT

A central challenge in microbial ecology is to understand the underlying mechanisms driving community assembly, particularly in the continuum of species sorting and dispersal limitation. However, little is known about the relative importance of species sorting and dispersal limitation in shaping marine microbial communities; especially, how they are related to organism types/traits and water depth. Here, we used variation partitioning and null model analysis to compare mechanisms driving bacterial and protist metacommunity dynamics at the basin scale in the East China Sea, based on MiSeq paired-end sequencing of 16S ribosomal DNA (rDNA) and 18S rDNA, respectively, in surface, deep chlorophyll maximum and bottom layers. Our analyses indicated that protist communities were governed more strongly by species sorting relative to dispersal limitation than were bacterial communities; this pattern was consistent across the three-depth layers, albeit to different degrees. Furthermore, we detected that bacteria exhibited wider habitat niche breadths than protists, whereas, passive dispersal abilities were not appreciably different between them. Our findings support the 'size-plasticity' hypothesis: smaller organisms (bacteria) are less environment filtered than larger organisms (protists), as smaller organisms are more likely to be plastic in metabolic abilities and have greater environmental tolerance.


Subject(s)
Bacteria/isolation & purification , Seawater/microbiology , Bacteria/genetics , DNA, Ribosomal/chemistry , Ecosystem , Eukaryota/genetics , Eukaryota/isolation & purification
3.
PLoS One ; 12(4): e0175235, 2017.
Article in English | MEDLINE | ID: mdl-28384288

ABSTRACT

We have developed a modified FlowCAM procedure for efficiently quantifying the size distribution of zooplankton. The modified method offers the following new features: 1) prevents animals from settling and clogging with constant bubbling in the sample container; 2) prevents damage to sample animals and facilitates recycling by replacing the built-in peristaltic pump with an external syringe pump, in order to generate negative pressure, creates a steady flow by drawing air from the receiving conical flask (i.e. vacuum pump), and transfers plankton from the sample container toward the main flowcell of the imaging system and finally into the receiving flask; 3) aligns samples in advance of imaging and prevents clogging with an additional flowcell placed ahead of the main flowcell. These modifications were designed to overcome the difficulties applying the standard FlowCAM procedure to studies where the number of individuals per sample is small, and since the FlowCAM can only image a subset of a sample. Our effective recycling procedure allows users to pass the same sample through the FlowCAM many times (i.e. bootstrapping the sample) in order to generate a good size distribution. Although more advanced FlowCAM models are equipped with syringe pump and Field of View (FOV) flowcells which can image all particles passing through the flow field; we note that these advanced setups are very expensive, offer limited syringe and flowcell sizes, and do not guarantee recycling. In contrast, our modifications are inexpensive and flexible. Finally, we compared the biovolumes estimated by automated FlowCAM image analysis versus conventional manual measurements, and found that the size of an individual zooplankter can be estimated by the FlowCAM image system after ground truthing.


Subject(s)
Zooplankton/isolation & purification , Animals , Cohort Studies
4.
ISME J ; 10(12): 2867-2878, 2016 12.
Article in English | MEDLINE | ID: mdl-27177191

ABSTRACT

We propose a method for detecting evolutionary forces underlying community assembly by quantifying the strength of community-environment relationships hierarchically along taxonomic ranks. This approach explores the potential role of phylogenetic conservatism on habitat preferences: wherein, phylogenetically related taxa are expected to exhibit similar environmental responses. Thus, when niches are conserved, broader taxonomic classification should not diminish the strength of community-environment relationships and may even yield stronger associations by summarizing occurrences and abundances of ecologically equivalent finely resolved taxa. In contrast, broader taxonomic classification should weaken community-environment relationships when niches are under great divergence (that is, by combining finer taxa with distinct environmental responses). Here, we quantified the strength of community-environment relationships using distance-based redundancy analysis, focusing on soil and seawater prokaryotic communities. We considered eight case studies (covering a variety of sampling scales and sequencing strategies) and found that the variation in community composition explained by environmental factors either increased or remained constant with broadening taxonomic resolution from species to order or even phylum level. These results support the niche conservatism hypothesis and indicate that broadening taxonomic resolution may strengthen niche-related signals by removing uncertainty in quantifying spatiotemporal distributions of finely resolved taxa, reinforcing the current notion of ecological coherence in deep prokaryotic branches.


Subject(s)
Bacteria/isolation & purification , Ecosystem , Seawater/microbiology , Bacteria/classification , Bacteria/genetics , Biological Evolution , Phylogeny , Soil/chemistry , Soil Microbiology
5.
Proc Biol Sci ; 283(1824)2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26865298

ABSTRACT

Body size exerts multiple effects on plankton food-web interactions. However, the influence of size structure on trophic transfer remains poorly quantified in the field. Here, we examine how the size diversity of prey (nano-microplankton) and predators (mesozooplankton) influence trophic transfer efficiency (using biomass ratio as a proxy) in natural marine ecosystems. Our results support previous studies on single trophic levels: transfer efficiency decreases with increasing prey size diversity and is enhanced with greater predator size diversity. We further show that communities with low nano-microplankton size diversity and high mesozooplankton size diversity tend to occur in warmer environments with low nutrient concentrations, thus promoting trophic transfer to higher trophic levels in those conditions. Moreover, we reveal an interactive effect of predator and prey size diversities: the positive effect of predator size diversity becomes influential when prey size diversity is high. Mechanistically, the negative effect of prey size diversity on trophic transfer may be explained by unicellular size-based metabolic constraints as well as trade-offs between growth and predation avoidance with size, whereas increasing predator size diversity may enhance diet niche partitioning and thus promote trophic transfer. These findings provide insights into size-based theories of ecosystem functioning, with implications for ecosystem predictive models.


Subject(s)
Biomass , Food Chain , Plankton/physiology , Pacific Ocean , Taiwan
6.
Ecology ; 95(4): 897-909, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24933809

ABSTRACT

Existing individual size distribution (ISD) theories assume that the trophic level (TL) of an organism varies as a linear function of its log-transformed body size. This assumption predicts a power-law distribution of the ISD, i.e., a linear relationship between size and abundance in log space. However, the secondary structure of ISD (nonlinear dome shape structures deviating from a power-law distribution) is often observed. We propose a model that extends the metabolic theory to link the secondary structure of ISD to the nonlinear size-TL relationship. This model is tested with empirical data collected from a subtropical reservoir. The empirical ISD and size-TL relationships were constructed by FlowCAM imaging analysis and stable isotope analyses, respectively. Our results demonstrate that the secondary structure of ISD can be predicted from the nonlinear function of size-TL relationship and vice versa. Moreover, these secondary structures arise due to (1) zooplankton omnivory and (2) the trophic interactions within microbial food webs.


Subject(s)
Body Size/physiology , Food Chain , Models, Biological , Plankton/physiology , Animals
7.
Nature ; 428(6982): 549-53, 2004 Apr 01.
Article in English | MEDLINE | ID: mdl-15058302

ABSTRACT

Iron supply has a key role in stimulating phytoplankton blooms in high-nitrate low-chlorophyll oceanic waters. However, the fate of the carbon fixed by these blooms, and how efficiently it is exported into the ocean's interior, remains largely unknown. Here we report on the decline and fate of an iron-stimulated diatom bloom in the Gulf of Alaska. The bloom terminated on day 18, following the depletion of iron and then silicic acid, after which mixed-layer particulate organic carbon (POC) concentrations declined over six days. Increased particulate silica export via sinking diatoms was recorded in sediment traps at depths between 50 and 125 m from day 21, yet increased POC export was not evident until day 24. Only a small proportion of the mixed-layer POC was intercepted by the traps, with more than half of the mixed-layer POC deficit attributable to bacterial remineralization and mesozooplankton grazing. The depletion of silicic acid and the inefficient transfer of iron-increased POC below the permanent thermocline have major implications both for the biogeochemical interpretation of times of greater iron supply in the geological past, and also for proposed geo-engineering schemes to increase oceanic carbon sequestration.


Subject(s)
Cold Climate , Iron/metabolism , Phytoplankton/physiology , Seawater/microbiology , Alaska , Carbon/metabolism , Diatoms/growth & development , Diatoms/physiology , Iron/analysis , Oceans and Seas , Phytoplankton/growth & development , Silicic Acid , Silicon Dioxide , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...