Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38731993

ABSTRACT

Extracellular proteases are key factors contributing to the virulence of pathogenic fungi from the genus Candida. Their proteolytic activities are crucial for extracting nutrients from the external environment, degrading host defenses, and destabilizing the internal balance of the human organism. Currently, the enzymes most frequently described in this context are secreted aspartic proteases (Saps). This review comprehensively explores the multifaceted roles of Saps, highlighting their importance in biofilm formation, tissue invasion through the degradation of extracellular matrix proteins and components of the coagulation cascade, modulation of host immune responses via impairment of neutrophil and monocyte/macrophage functions, and their contribution to antifungal resistance. Additionally, the diagnostic challenges associated with Candida infections and the potential of Saps as biomarkers were discussed. Furthermore, we examined the prospects of developing vaccines based on Saps and the use of protease inhibitors as adjunctive therapies for candidiasis. Given the complex biology of Saps and their central role in Candida pathogenicity, a multidisciplinary approach may pave the way for innovative diagnostic strategies and open new opportunities for innovative clinical interventions against candidiasis.


Subject(s)
Aspartic Acid Proteases , Candidiasis , Host-Pathogen Interactions , Humans , Aspartic Acid Proteases/metabolism , Candidiasis/microbiology , Candida/pathogenicity , Candida/enzymology , Biofilms/growth & development , Animals , Fungal Proteins/metabolism
2.
Int J Mol Sci ; 25(2)2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38256088

ABSTRACT

Candida albicans and other closely related pathogenic yeast-like fungi carry on their surface numerous loosely adsorbed "moonlighting proteins"-proteins that play evolutionarily conserved intracellular functions but also appear on the cell surface and exhibit additional functions, e.g., contributing to attachment to host tissues. In the current work, we characterized this "moonlighting" role for glyceraldehyde 3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) of C. albicans and Nakaseomyces glabratus. GAPDH was directly visualized on the cell surface of both species and shown to play a significant part in the total capacity of fungal cells to bind two selected human host proteins-vitronectin and plasminogen. Using purified proteins, both host proteins were found to tightly interact with GAPDH, with dissociation constants in an order of 10-8 M, as determined by bio-layer interferometry and surface plasmon resonance measurements. It was also shown that exogenous GAPDH tightly adheres to the surface of candidal cells, suggesting that the cell surface location of this moonlighting protein may partly result from the readsorption of its soluble form, which may be present at an infection site (e.g., due to release from dying fungal cells). The major dedicated adhesins, covalently bound to the cell wall-agglutinin-like sequence protein 3 (Als3) and epithelial adhesin 6 (Epa6)-were suggested to serve as the docking platforms for GAPDH in C. albicans and N. glabratus, respectively.


Subject(s)
Candida albicans , Fungal Proteins , Glyceraldehyde-3-Phosphate Dehydrogenases , Humans , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Plasminogen/metabolism , Vitronectin/metabolism , Fungal Proteins/metabolism
3.
Int J Mol Sci ; 24(13)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37445613

ABSTRACT

The development of infections caused by pathogenic bacteria is largely related to the specific properties of the bacterial cell surface and extracellular hydrolytic activity. Furthermore, a significant role of hijacking of host proteolytic cascades by pathogens during invasion should not be disregarded during consideration of the mechanisms of bacterial virulence. This is the key factor for the pathogen evasion of the host immune response, tissue damage, and pathogen invasiveness at secondary infection sites after initial penetration through tissue barriers. In this review, the mechanisms of bacterial impact on host plasminogen-the precursor of the important plasma serine proteinase, plasmin-are characterized, principally focusing on cell surface exposition of various proteins, responsible for binding of this host (pro)enzyme and its activators or inhibitors, as well as the fibrinolytic system activation tactics exploited by different bacterial species, not only pathogenic, but also selected harmless residents of the human microbiome. Additionally, the involvement of bacterial factors that modulate the process of plasminogen activation and fibrinolysis during periodontitis is also described, providing a remarkable example of a dual use of this host system in the development of chronic diseases.


Subject(s)
Persistent Infection , Plasminogen , Humans , Plasminogen/metabolism , Bacteria/metabolism , Fibrinolysin/metabolism , Fibrinolysis
4.
Yeast ; 40(8): 303-317, 2023 08.
Article in English | MEDLINE | ID: mdl-37190878

ABSTRACT

The oral cavity of humans is colonized by diversity of microbial community, although dominated by bacteria, it is also constituted by a low number of fungi, often represented by Candida albicans. Although in the vast minority, this usually commensal fungus under certain conditions of the host (e.g., immunosuppression or antibiotic therapy), can transform into an invasive pathogen that adheres to mucous membranes and also to medical or dental devices, causing mucosal infections. This transformation is correlated with changes in cell morphology from yeast-like cells to hyphae and is supported by numerous virulence factors exposed by C. albicans cells at the site of infection, such as multifunctional adhesins, degradative enzymes, or toxin. All of them affect the surrounding host cells or proteins, leading to their destruction. However, at the site of infection, C. albicans can interact with different bacterial species and in its filamentous form may produce biofilms-the elaborated consortia of microorganisms, that present increased ability to host colonization and resistance to antimicrobial agents. In this review, we highlight the modification of the infectious potential of C. albicans in contact with different bacterial species, and also consider the mutual bacterial-fungal relationships, involving cooperation, competition, or antagonism, that lead to an increase in the propagation of oral infection. The mycofilm of C. albicans is an excellent hiding place for bacteria, especially those that prefer low oxygen availability, where microbial cells during mutual co-existence can avoid host recognition or elimination by antimicrobial action. However, these microbial relationships, identified mainly in in vitro studies, are modified depending on the complexity of host conditions and microbial dominance in vivo.


Subject(s)
Candida albicans , Microbial Interactions , Humans , Mouth/microbiology , Biofilms , Symbiosis , Bacteria
5.
Yeast ; 40(8): 377-389, 2023 08.
Article in English | MEDLINE | ID: mdl-36851809

ABSTRACT

One of the initial steps necessary for the development of Candida infections is the adherence to the host tissues and cells. Recent transcriptomic studies suggest that, in Candida parapsilosis-a fungal infectious agent that causes systemic candidiasis in immunosuppressed individuals-the adhesion is mediated by pathogen cell-exposed proteins belonging to the agglutinin-like sequence (Als) family. However, to date, the actual interactions of individual members of this family with human cells and extracellular matrix (ECM) have not been characterized in detail. In the current study, we focused attention on two of these C. parapsilosis Als proteins-CPAR2_404800 and CPAR2_404780-that were proteomically identified in the fungal cell wall of yeasts grown in the media suitable for culturing human epithelial and endothelial cells. Both proteins were extracted from the cell wall and purified, and using a microplate binding assay and a fluorescence microscopic analysis were shown to adhere to human cells of A431 (epithelial) and HMEC-1 (endothelial) lines. The human extracellular matrix components that are also plasma proteins-fibronectin and vitronectin-enhanced these interactions, and also could directly bind to CPAR2_404800 and CPAR2_404780 proteins, with a high affinity (KD in a range of 10-7 to 10-8 M) as determined by surface plasmon resonance measurements. Our findings highlight the role of proteins CPAR2_404800 and CPAR2_404780 in adhesion to host cells and proteins, contributing to the knowledge of the mechanisms of host-pathogen interactions during C. parapsilosis-caused infections.


Subject(s)
Candida parapsilosis , Extracellular Matrix Proteins , Humans , Candida parapsilosis/metabolism , Extracellular Matrix Proteins/metabolism , Fungal Proteins/metabolism , Endothelial Cells/metabolism , Cell Wall/metabolism
6.
J Fungi (Basel) ; 9(1)2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36675942

ABSTRACT

Extracellular proteases belong to the main virulence factors of pathogenic fungi. Their proteolytic activities plays a crucial role in the acquisition of nutrients from the external environment, destroying host barriers and defenses, and disrupting homeostasis in the human body, e.g., by affecting the functions of plasma proteolytic cascades, and playing sophisticated regulatory roles in various processes. Interestingly, some proteases belong to the group of moonlighting proteins, i.e., they have additional functions that contribute to successful host colonization and infection development, but they are not directly related to proteolysis. In this review, we describe examples of such multitasking of extracellular proteases that have been reported for medically important pathogenic fungi of the Candida, Aspergillus, Penicillium, Cryptococcus, Rhizopus, and Pneumocystis genera, as well as dermatophytes and selected endemic species. Additional functions of proteinases include supporting binding to host proteins, and adhesion to host cells. They also mediate self-aggregation and biofilm formation. In addition, fungal proteases affect the host immune cells and allergenicity, understood as the ability to stimulate a non-standard immune response. Finally, they play a role in the proper maintenance of cellular homeostasis. Knowledge about the multifunctionality of proteases, in addition to their canonical roles, greatly contributes to an understanding of the mechanisms of fungal pathogenicity.

7.
Adv Exp Med Biol ; 1373: 113-138, 2022.
Article in English | MEDLINE | ID: mdl-35612795

ABSTRACT

The human oral cavity is a diverse ecological niche favorable for colonization by hundreds of different species of microorganisms. They include not only bacteria but also numerous species of fungi, many of which are able to cause opportunistic infections when the host's immunity is impaired, predominantly by systemic and chronic diseases like diabetes, pulmonary diseases, renal disorders, or acquired immunodeficiency syndrome. Within the dental biofilm and subgingival sites, fungi of the genus Candida are often found, also in individuals affected with periodontitis. Moreover, fungal species of other genera, including Malassezia, Aspergillus, Penicillium, and Rhodotorula were identified in the oral cavity as well. The wide range of various virulence factors and mechanisms displayed by fungal pathogens allows them effectively invading host tissues during periodontal infections. These pathogenicity-related mechanisms include firstly the fungal ability to adhere successfully to the host tissues closely related to the formation of hyphae, the increase in the surface hydrophobicity, and the surface display of a wide variety of adhesins. Further mechanisms include biofilm formation and secretion of an armory of hydrolytic enzymes and toxins enabling the attack on host cells, modulation of the local inflammatory state, and evading the host immune system. In the pathogenesis of periodontitis, the significant role of fungal co-existence with key bacterial periodontopathogens has been demonstrated, and such interactions were primarily confirmed for Candida albicans and Porphyromonas gingivalis, where the presence of fungi ensured the survival of strictly anaerobic bacteria under unfavorable aerobic conditions. However, several other mechanisms, including those related to the production of quorum sensing molecules, might also be indicated as particularly important for synergistic or antagonistic interactions with a variety of bacterial species within mixed biofilms. These interactions constitute an extraordinary challenge for applying effective methods of combating biofilm-related infections in the periodontium without the risk of the development of drug resistance, the recurrence of disease symptoms, and the progress of life-threating systemic complications.


Subject(s)
Microbiota , Periodontitis , Biofilms , Candida albicans , Humans , Porphyromonas gingivalis
8.
mBio ; 13(3): e0378721, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35491845

ABSTRACT

Porphyromonas gingivalis, a keystone pathogen in periodontitis (PD), produces cysteine proteases named gingipains (RgpA, RgpB, and Kgp), which strongly affect the host immune system. The range of action of gingipains is extended by their release as components of outer membrane vesicles, which efficiently diffuse into surrounding gingival tissues. However, away from the anaerobic environment of periodontal pockets, increased oxygen levels lead to oxidation of the catalytic cysteine residues of gingipains, inactivating their proteolytic activity. In this context, the influence of catalytically inactive gingipains on periodontal tissues is of significant interest. Here, we show that proteolytically inactive RgpA induced a proinflammatory response in both gingival keratinocytes and dendritic cells. Inactive RgpA is bound to the cell surface of gingival keratinocytes in the region of lipid rafts, and using affinity chromatography, we identified RgpA-interacting proteins, including epidermal growth factor receptor (EGFR). Next, we showed that EGFR interaction with inactive RgpA stimulated the expression of inflammatory cytokines. The response was mediated via the EGFR-phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway, which when activated in the gingival tissue rich in dendritic cells in the proximity of the alveolar bone, may significantly contribute to bone resorption and the progress of PD. Taken together, these findings broaden our understanding of the biological role of gingipains, which in acting as proinflammatory factors in the gingival tissue, create a favorable milieu for the growth of inflammophilic pathobionts. IMPORTANCE Gingipain cysteine proteases are essential virulence factors of Porphyromonas gingivalis, an oral bacterium implicated in development of periodontitis. Gingipains diffusing from anaerobic periodontal pockets lose proteolytic activity in the oxygenated environment of gingival tissues. We found that despite the loss of activity, gingipains still elicit a strong inflammatory response, which may contribute to the progression of periodontitis and bone resorption. Moreover, we identified the host molecules utilized by the pathogen as receptors for proteolytically inactivated gingipains. The broad distribution of those receptors in human tissue suggests their involvement in systemic diseases associated with periodontal pathogens.


Subject(s)
Bone Resorption , Periodontitis , Adhesins, Bacterial/metabolism , Cysteine Endopeptidases/metabolism , ErbB Receptors/metabolism , Gingipain Cysteine Endopeptidases , Humans , Immunity , Periodontal Pocket , Periodontitis/microbiology , Phosphatidylinositol 3-Kinases/metabolism , Porphyromonas gingivalis/physiology
9.
Acta Biochim Pol ; 68(4): 515-525, 2021 Nov 14.
Article in English | MEDLINE | ID: mdl-34773933

ABSTRACT

Although many atypical proteinaceous cell wall components that belong to a group of multitasking, "moonlighting" proteins, have been repeatedly identified in numerous pathogenic microorganisms, their novel extracellular functions and secretion mechanisms remain largely unrecognized. In Candida albicans, one of the most common fungal pathogens in humans, phosphoglycerate mutase (Gpm1) - a cytoplasmic enzyme involved in the glycolysis pathway - has been shown to occur on the cell surface and has been identified as a potentially important virulence factor. In this study, we demonstrated tight binding of C. albicans Gpm1 to the candidal cell surface, thus suggesting that the readsorption of soluble Gpm1 from the external environment could be a likely mechanism leading to the presence of this moonlighting protein on the pathogen surface. Several putative Gpm1-binding receptors on the yeast surface were identified. The affinities of Gpm1 to human vitronectin (VTR) and fibronectin (FN) were characterized with surface plasmon resonance measurements, and the dissociation constants of the complexes formed were determined to be in the order of 10-8 M. The internal Gpm1 sequence motifs, directly interacting with VTR (aa 116-158) and FN (aa 138-175) were mapped using chemical crosslinking and mass spectrometry. Synthetic peptides with matching sequences significantly inhibited formation of the Gpm1-VTR and Gpm1-FN complexes. A molecular model of the Gpm1-VTR complex was developed. These results provide the first structural insights into the adhesin function of candidal surface-exposed Gpm1.


Subject(s)
Candida albicans/metabolism , Extracellular Matrix Proteins/metabolism , Fungal Proteins/metabolism , Phosphoglycerate Mutase/metabolism , Candida albicans/chemistry , Cell Membrane/metabolism , Cell Wall/metabolism , Extracellular Matrix Proteins/chemistry , Fibronectins/chemistry , Fibronectins/metabolism , Fungal Proteins/chemistry , Humans , Models, Molecular , Phosphoglycerate Mutase/chemistry , Protein Binding , Surface Plasmon Resonance/methods , Virulence Factors/metabolism , Vitronectin/chemistry , Vitronectin/metabolism
10.
Cells ; 10(10)2021 10 13.
Article in English | MEDLINE | ID: mdl-34685715

ABSTRACT

One of defense mechanisms of the human immune system to counteract infection by the opportunistic fungal pathogen Candida albicans is the recruitment of neutrophils to the site of invasion, and the subsequent production of neutrophil extracellular traps (NETs) that efficiently capture and kill the invader cells. In the current study, we demonstrate that within these structures composed of chromatin and proteins, the latter play a pivotal role in the entrapment of the fungal pathogen. The proteinous components of NETs, such as the granular enzymes elastase, myeloperoxidase and lactotransferrin, as well as histones and cathelicidin-derived peptide LL-37, are involved in contact with the surface of C. albicans cells. The fungal partners in these interactions are a typical adhesin of the agglutinin-like sequence protein family Als3, and several atypical surface-exposed proteins of cytoplasmic origin, including enolase, triosephosphate isomerase and phosphoglycerate mutase. Importantly, the adhesion of both the elastase itself and the mixture of proteins originating from NETs on the C. albicans cell surface considerably increased the pathogen potency of human epithelial cell destruction compared with fungal cells without human proteins attached. Such an implementation of adsorbed NET-derived proteins by invading C. albicans cells might alter the effectiveness of the fungal pathogen entrapment and affect the further host colonization.


Subject(s)
Candida albicans/pathogenicity , Candidiasis/microbiology , Cell Wall/metabolism , Extracellular Traps/metabolism , Fungal Proteins/metabolism , Host-Pathogen Interactions , Apoptosis , Candida albicans/cytology , Candidiasis/pathology , Cathelicidins/metabolism , Citrullination , Histones/metabolism , Humans , Hyphae/physiology , Kinetics , Leukocyte Elastase/metabolism , Microbial Viability , Protein Interaction Maps , Saccharomyces cerevisiae/metabolism
11.
BMC Microbiol ; 21(1): 199, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34210257

ABSTRACT

BACKGROUND: Triosephosphate isomerase (Tpi1) is a glycolytic enzyme that has recently been reported also to be an atypical proteinaceous component of the Candida yeast cell wall. Similar to other known candidal "moonlighting proteins", surface-exposed Tpi1 is likely to contribute to fungal adhesion during the colonization and infection of a human host. The aim of our present study was to directly prove the presence of Tpi1 on C. albicans and C. glabrata cells under various growth conditions and characterize the interactions of native Tpi1, isolated and purified from the candidal cell wall, with human extracellular matrix proteins. RESULTS: Surface plasmon resonance measurements were used to determine the dissociation constants for the complexes of Tpi1 with host proteins and these values were found to fall within a relatively narrow range of 10- 8-10- 7 M. Using a chemical cross-linking method, two motifs of the Tpi1 molecule (aa 4-17 and aa 224-247) were identified to be directly involved in the interaction with vitronectin. A proposed structural model for Tpi1 confirmed that these interaction sites were at a considerable distance from the catalytic active site. Synthetic peptides with these sequences significantly inhibited Tpi1 binding to several extracellular matrix proteins suggesting that a common region on the surface of Tpi1 molecule is involved in the interactions with the host proteins. CONCLUSIONS: The current study provided structural insights into the interactions of human extracellular matrix proteins with Tpi1 that can occur at the cell surface of Candida yeasts and contribute to the host infection by these fungal pathogens.


Subject(s)
Candida albicans/enzymology , Candida glabrata/enzymology , Extracellular Matrix Proteins/metabolism , Triose-Phosphate Isomerase/metabolism , Fungal Proteins/metabolism , Humans , Protein Binding
12.
Front Cell Infect Microbiol ; 11: 681030, 2021.
Article in English | MEDLINE | ID: mdl-34123878

ABSTRACT

Neutrophils, the first line of the host's defense, use a variety of antimicrobial mechanisms to fight invading pathogens. One of the most crucial is the production of neutrophil extracellular traps (NETs) in the process called NETosis. The unique structure of NETs effectively inhibits the spread of pathogens and ensures their exposure to a high concentration of NET-embedded antimicrobial compounds. NETosis strategy is often used by the host to defend against fungal infection caused by Candida albicans. In immunocompromised patients, this microorganism is responsible for developing systemic fungal infections (candidiasis). This is correlated with the use of a vast array of virulence factors, leading to the acquisition of specific resistance to host defense factors and available drug therapies. One of the most important features favoring the development of drug resistance is a C. albicans ability to form biofilms that protect fungal cells mainly through the production of an extracellular matrix (ECM). Among the main ECM-building macromolecules extracellular nucleic acids have been identified and their role is probably associated with the stbilization of the biofilm structure. The complex interactions of immune cells with the thick ECM layer, comprising the first line of contact between these cells and the biofilm structure, are still poorly understood. Therefore, the current studies aimed to assess the release of extracellular nucleic acids by C. albicans strains at different stages of biofilm formation, and to determine the role of these molecules in triggering the NETosis. We showed for the first time that fungal nucleic acids, purified directly from mature C. albicans biofilm structure or obtained from the whole fungal cells, have the potential to induce NET release in vitro. In this study, we considered the involvement of TLR8 and TLR9 in NETosis activation. We showed that DNA and RNA molecules initiated the production of reactive oxygen species (ROS) by activation of the NADPH oxidase complex, essential for ROS-dependent NETosis. Furthermore, analysis of the cell migration showed that the nucleic acids located in the extracellular space surrounding the biofilm may be also effective chemotactic factors, driving the dynamic migration of human neutrophils to the site of ongoing fungal infection.


Subject(s)
Extracellular Traps , Nucleic Acids , Biofilms , Candida albicans , Humans , Neutrophils
13.
Front Cell Infect Microbiol ; 11: 765942, 2021.
Article in English | MEDLINE | ID: mdl-35071033

ABSTRACT

Periodontal disease depends on the presence of different microorganisms in the oral cavity that during the colonization of periodontal tissues form a multispecies biofilm community, thus allowing them to survive under adverse conditions or facilitate further colonization of host tissues. Not only numerous bacterial species participate in the development of biofilm complex structure but also fungi, especially Candida albicans, that often commensally inhabits the oral cavity. C. albicans employs an extensive armory of various virulence factors supporting its coexistence with bacteria resulting in successful host colonization and propagation of infection. In this article, we highlight various aspects of individual fungal virulence factors that may facilitate the collaboration with the associated bacterial representatives of the early colonizers of the oral cavity, the bridging species, and the late colonizers directly involved in the development of periodontitis, including the "red complex" species. In particular, we discuss the involvement of candidal cell surface proteins-typical fungal adhesins as well as originally cytosolic "moonlighting" proteins that perform a new function on the cell surface and are also present within the biofilm structures. Another group of virulence factors considered includes secreted aspartic proteases (Sap) and other secreted hydrolytic enzymes. The specific structure of the candidal cell wall, dynamically changing during morphological transitions of the fungus that favor the biofilm formation, is equally important and discussed. The non-protein biofilm-composing factors also show dynamic variability upon the contact with bacteria, and their biosynthesis processes could be involved in the stability of mixed biofilms. Biofilm-associated changes in the microbe communication system using different quorum sensing molecules of both fungal and bacterial cells are also emphasized in this review. All discussed virulence factors involved in the formation of mixed biofilm pose new challenges and influence the successful design of new diagnostic methods and the application of appropriate therapies in periodontal diseases.


Subject(s)
Candida albicans , Virulence Factors , Bacteria , Biofilms , Quorum Sensing
14.
Cell Microbiol ; 23(4): e13297, 2021 04.
Article in English | MEDLINE | ID: mdl-33237623

ABSTRACT

The multifunctional protein enolase has repeatedly been identified on the surface of numerous cell types, including a variety of pathogenic microorganisms. In Candida albicans-one of the most common fungal pathogens in humans-a surface-exposed enolase form has been previously demonstrated to play an important role in candidal pathogenicity. In our current study, the presence of enolase at the fungal cell surface under different growth conditions was examined, and a higher abundance of enolase at the surface of C. albicans hyphal forms compared to yeast-like cells was found. Affinity chromatography and chemical cross-linking indicated a member of the agglutinin-like sequence protein family-Als3-as an important potential partner required for the surface display of enolase. Analysis of Saccharomyces cerevisiae cells overexpressing Als3 with site-specific deletions showed that the Ig-like N-terminal region of Als3 (aa 166-225; aa 218-285; aa 270-305; aa 277-286) and the central repeat domain (aa 434-830) are essential for the interaction of this adhesin with enolase. In addition, binding between enolase and Als3 influenced subsequent docking of host plasma proteins-high molecular mass kininogen and plasminogen-on the candidal cell surface, thus supporting the hypothesis that C. albicans can modulate plasma proteolytic cascades to affect homeostasis within the host and propagate inflammation during infection.


Subject(s)
Candida albicans/genetics , Candida albicans/metabolism , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Phosphopyruvate Hydratase/genetics , Phosphopyruvate Hydratase/metabolism , Biofilms/growth & development , Candida albicans/enzymology , Fungal Proteins/genetics , Humans , Hyphae/enzymology , Hyphae/metabolism , Protein Binding , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
15.
Int J Mol Sci ; 21(21)2020 Oct 22.
Article in English | MEDLINE | ID: mdl-33105833

ABSTRACT

Significant amounts of enolase-a cytosolic enzyme involved in the glycolysis pathway-are exposed on the cell surface of Candida yeast. It has been hypothesized that this exposed enolase form contributes to infection-related phenomena such as fungal adhesion to human tissues, and the activation of fibrinolysis and extracellular matrix degradation. The aim of the present study was to characterize, in structural terms, the protein-protein interactions underlying these moonlighting functions of enolase. The tight binding of human vitronectin, fibronectin and plasminogen by purified C. albicans and C. tropicalis enolases was quantitatively analyzed by surface plasmon resonance measurements, and the dissociation constants of the formed complexes were determined to be in the 10-7-10-8 M range. In contrast, the binding of human proteins by the S.cerevisiae enzyme was much weaker. The chemical cross-linking method was used to map the sites on enolase molecules that come into direct contact with human proteins. An internal motif 235DKAGYKGKVGIAMDVASSEFYKDGK259 in C. albicans enolase was suggested to contribute to the binding of all three human proteins tested. Models for these interactions were developed and revealed the sites on the enolase molecule that bind human proteins, extensively overlap for these ligands, and are well-separated from the catalytic activity center.


Subject(s)
Fibronectins/metabolism , Phosphopyruvate Hydratase/metabolism , Plasminogen/metabolism , Vitronectin/metabolism , Amino Acid Motifs , Antibodies/metabolism , Binding, Competitive , Candida albicans/enzymology , Candida tropicalis/enzymology , Cytosol/enzymology , Fibronectins/chemistry , Host-Pathogen Interactions/physiology , Humans , Immobilized Proteins/metabolism , Models, Molecular , Phosphopyruvate Hydratase/chemistry , Phosphopyruvate Hydratase/genetics , Phosphopyruvate Hydratase/immunology , Plasminogen/chemistry , Vitronectin/chemistry
16.
Blood Coagul Fibrinolysis ; 31(6): 393-396, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32815915

ABSTRACT

: In type 2 diabetes mellitus (T2DM), increased α2-antiplasmin incorporation in fibrin and impaired fibrinolysis have been reported. Acetylsalicylic acid (ASA), used in cardiovascular prevention, modulates fibrinolysis and exerts weaker therapeutic effect in this disease. We investigated how glycation and acetylation of α2-antiplasmin affects its interaction with fibrin. Using surface plasmon resonance, we analyzed fibrin binding by α2-antiplasmin incubated with no ß-D-glucose or ASA (control); incubated with ß-D-glucose (5, 10, 50 mmol/l); (3) incubated with 1.6 mmol/l acetylsalicylic acid (ASA) and (4) incubated with 1.6 mmol/l ASA and 50 mmol/l ß-D-glucose. Incubation with glucose decreased affinity of α2-antiplasmin for fibrin compared with control α2-antiplasmin in a glucose concentration-depending manner. α2-Antiplasmin incubation with ASA did not affect its affinity to fibrin. α2-Antiplasmin incubation with ASA and glucose resulted in 4.2-fold increased affinity to fibrin compared with α2-antiplasmin incubated with 50 mmol/l glucose (P < 0.001). In conclusion, α2-antiplasmin incubation with glucose at concentrations encountered in T2DM is associated with decreased binding affinity of α2-antiplasmin to fibrin. ASA alone does not affect the binding affinity of α2-antiplasmin to fibrin, but partly reverses the effect introduced by the incubation with 50 mmol/l glucose. This study suggests new mechanisms involved in regulating fibrinolysis efficiency in hyperglycemia.


Subject(s)
Blood Coagulation , Fibrin/metabolism , alpha-2-Antiplasmin/metabolism , Acetylation , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Fibrinolysis , Glycosylation , Humans , Hyperglycemia/blood , Hyperglycemia/metabolism
17.
Microorganisms ; 8(7)2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32674422

ABSTRACT

The cell wall in Candida albicans is not only a tight protective envelope but also a point of contact with the human host that provides a dynamic response to the constantly changing environment in infection niches. Particularly important roles are attributed to proteins exposed at the fungal cell surface. These include proteins that are stably and covalently bound to the cell wall or cell membrane and those that are more loosely attached. Interestingly in this regard, numerous loosely attached proteins belong to the class of "moonlighting proteins" that are originally intracellular and that perform essentially different functions in addition to their primary housekeeping roles. These proteins also demonstrate unpredicted interactions with non-canonical partners at an a priori unexpected extracellular location, achieved via non-classical secretion routes. Acting both individually and collectively, the moonlighting proteins contribute to candidal virulence and pathogenicity through their involvement in mechanisms critical for successful host colonization and infection, such as the adhesion to host cells, interactions with plasma homeostatic proteolytic cascades, responses to stress conditions and molecular mimicry. The documented knowledge of the roles of these proteins in C. albicans pathogenicity has utility for assisting the design of new therapeutic, diagnostic and preventive strategies against candidiasis.

18.
Int J Mol Sci ; 21(6)2020 Mar 14.
Article in English | MEDLINE | ID: mdl-32183255

ABSTRACT

Candida albicans is a pathogenic fungus capable of switching its morphology between yeast-like cells and filamentous hyphae and can associate with bacteria to form mixed biofilms resistant to antibiotics. In these structures, the fungal milieu can play a protective function for bacteria as has recently been reported for C. albicans and a periodontal pathogen-Porphyromonas gingivalis. Our current study aimed to determine how this type of mutual microbe protection within the mixed biofilm affects the contacting host cells. To analyze C. albicans and P. gingivalis persistence and host infection, several models for host-biofilm interactions were developed, including microbial exposure to a representative monocyte cell line (THP1) and gingival fibroblasts isolated from periodontitis patients. For in vivo experiments, a mouse subcutaneous chamber model was utilized. The persistence of P. gingivalis cells was observed within mixed biofilm with C. albicans. This microbial co-existence influenced host immunity by attenuating macrophage and fibroblast responses. Cytokine and chemokine production decreased compared to pure bacterial infection. The fibroblasts isolated from patients with severe periodontitis were less susceptible to fungal colonization, indicating a modulation of the host environment by the dominating bacterial infection. The results obtained for the mouse model in which a sequential infection was initiated by the fungus showed that this host colonization induced a milder inflammation, leading to a significant reduction in mouse mortality. Moreover, high bacterial counts in animal organisms were noted on a longer time scale in the presence of C. albicans, suggesting the chronic nature of the dual-species infection.


Subject(s)
Bacteroidaceae Infections/immunology , Candida albicans/physiology , Gingiva/immunology , Immune Evasion/immunology , Periodontitis/immunology , Porphyromonas gingivalis/immunology , Animals , Bacteroidaceae Infections/microbiology , Biofilms/drug effects , Cells, Cultured , Coinfection/immunology , Coinfection/microbiology , Disease Models, Animal , Female , Fibroblasts/immunology , Gingiva/microbiology , Humans , Inflammation/immunology , Macrophages/immunology , Mice , Microbial Interactions , Periodontitis/microbiology
19.
BMC Microbiol ; 19(1): 149, 2019 07 03.
Article in English | MEDLINE | ID: mdl-31269895

ABSTRACT

BACKGROUND: Adaptability to different environmental conditions is an essential characteristic of pathogenic microorganisms as it facilitates their invasion of host organisms. The most external component of pathogenic yeast-like fungi from the Candida genus is the multilayered cell wall. This structure is composed mainly of complex polysaccharides and proteins that can undergo dynamic changes to adapt to the environmental conditions of colonized niches. RESULTS: We utilized cell surface shaving with trypsin and a shotgun proteomic approach to reveal the surface-exposed proteins of three important non-albicans Candida species-C. glabrata, C. parapsilosis and C. tropicalis. These proteinaceous components were identified after the growth of the fungal cells in various culture media, including artificial saliva, artificial urine and vagina-simulative medium under aerobic conditions and anaerobically in rich YPD medium. Several known proteins involved in cell wall maintenance and fungal pathogenesis were identified at the cell surface as were a number of atypical cell wall components-pyruvate decarboxylase (Pdc11), enolase (Eno1) and glyceraldehyde-3-phosphate dehydrogenase (Tdh3) which are so-called 'moonlighting' proteins. Notably, many of these proteins showed significant upregulation at the cell surface in growth media mimicking the conditions of infection compared to defined synthetic medium. CONCLUSIONS: Moonlighting proteins are expressed under diverse conditions at the cell walls of the C. glabrata, C. parapsilosis and C. tropicalis fungal pathogens. This indicates a possible universal surface-associated role of these factors in the physiology of these fungi and in the pathology of the infections they cause.


Subject(s)
Candida glabrata/metabolism , Candida parapsilosis/metabolism , Candida tropicalis/metabolism , Cell Membrane/metabolism , Candida glabrata/growth & development , Candida parapsilosis/growth & development , Candida tropicalis/growth & development , Cell Wall/metabolism , Culture Media/chemistry , Fungal Proteins/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/metabolism , Phosphopyruvate Hydratase/metabolism , Proteome , Pyruvate Decarboxylase/metabolism , Trypsin/metabolism
20.
Sci Rep ; 9(1): 4376, 2019 03 13.
Article in English | MEDLINE | ID: mdl-30867500

ABSTRACT

The oral cavity contains different types of microbial species that colonize human host via extensive cell-to-cell interactions and biofilm formation. Candida albicans-a yeast-like fungus that inhabits mucosal surfaces-is also a significant colonizer of subgingival sites in patients with chronic periodontitis. It is notable however that one of the main infectious agents that causes periodontal disease is an anaerobic bacterium-Porphyromonas gingivalis. In our study, we evaluated the different strategies of both pathogens in the mutual colonization of an artificial surface and confirmed that a protective environment existed for P. gingivalis within developed fungal biofilm formed under oxic conditions where fungal cells grow mainly in their filamentous form i.e. hyphae. A direct physical contact between fungi and P. gingivalis was initiated via a modulation of gene expression for the major fungal cell surface adhesin Als3 and the aspartic proteases Sap6 and Sap9. Proteomic identification of the fungal surfaceome suggested also an involvement of the Mp65 adhesin and a "moonlighting" protein, enolase, as partners for the interaction with P. gingivalis. Using mutant strains of these bacteria that are defective in the production of the gingipains-the proteolytic enzymes that also harbor hemagglutinin domains-significant roles of these proteins in the formation of bacteria-protecting biofilm were clearly demonstrated.


Subject(s)
Adhesins, Bacterial/metabolism , Bacteria, Anaerobic/physiology , Biofilms , Candida albicans/physiology , Microbial Interactions , Porphyromonas gingivalis/physiology , Adhesins, Bacterial/genetics , Bacterial Adhesion , Fungal Proteins/genetics , Fungal Proteins/metabolism , Humans , Microbial Viability , Proteomics/methods , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...