Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Physiol Rep ; 12(9): e16043, 2024 May.
Article in English | MEDLINE | ID: mdl-38724885

ABSTRACT

The epithelial cells that line the kidneys and lower urinary tract are exposed to mechanical forces including shear stress and wall tension; however, the mechanosensors that detect and respond to these stimuli remain obscure. Candidates include the OSCA/TMEM63 family of ion channels, which can function as mechanosensors and osmosensors. Using Tmem63bHA-fl/HA-fl reporter mice, we assessed the localization of HA-tagged-TMEM63B within the urinary tract by immunofluorescence coupled with confocal microscopy. In the kidneys, HA-TMEM63B was expressed by proximal tubule epithelial cells, by the intercalated cells of the collecting duct, and by the epithelial cells lining the thick ascending limb of the medulla. In the urinary tract, HA-TMEM63B was expressed by the urothelium lining the renal pelvis, ureters, bladder, and urethra. HA-TMEM63B was also expressed in closely allied organs including the epithelial cells lining the seminal vesicles, vas deferens, and lateral prostate glands of male mice and the vaginal epithelium of female mice. Our studies reveal that TMEM63B is expressed by subsets of kidney and lower urinary tract epithelial cells, which we hypothesize are sites of TMEM63B mechanosensation or osmosensation, or both.


Subject(s)
Urinary Tract , Animals , Mice , Male , Female , Urinary Tract/metabolism , Mechanotransduction, Cellular/physiology , Ion Channels/metabolism , Ion Channels/genetics , Mice, Inbred C57BL , Urothelium/metabolism , Urothelium/cytology , Epithelial Cells/metabolism
2.
Article in English | MEDLINE | ID: mdl-38634134

ABSTRACT

The ENaC γ subunit is essential for homeostasis of Na+, K+, and body fluid. Dual γ subunit cleavage before and after a short inhibitory tract allows dissociation of this tract, increasing channel open probability (PO), in vitro. Cleavage proximal to the tract occurs at a furin recognition sequence (143RKRR146, in the mouse γ subunit). Loss of furin-mediated cleavage prevents in vitro activation of the channel by proteolysis at distal sites. We hypothesized that 143RKRR146 mutation to 143QQQQ146 (γQ4) in 129/Sv mice would reduce ENaC PO, impair flow-stimulated flux of Na+ (JNa) and K+ (JK) in perfused collecting ducts, reduce colonic amiloride-sensitive short circuit current (ISC), and impair Na+, K+, and body fluid homeostasis. Immunoblot of γQ4/Q4 mouse kidney lysates confirmed loss of a band consistent in size with the furin-cleaved proteolytic fragment. However, γQ4/Q4 male mice on a low Na+ diet did not exhibit altered ENaC PO or flow-induced JNa, though flow-induced JK modestly decreased. Colonic amiloride-sensitive ISC in γQ4/Q4 mice was not altered. γQ4/Q4 males, but not females, exhibited mildly impaired fluid volume conservation when challenged with a low Na+ diet. Blood Na+ and K+ were unchanged on a regular, low Na+, or high K+ diet. These findings suggest that biochemical evidence of γ subunit cleavage should be used in isolation to evaluate ENaC activity. Further, factors independent of γ subunit cleavage modulate channel PO and the influence of ENaC on Na+, K+, and fluid volume homeostasis in 129/Sv mice, in vivo.

3.
Article in English | MEDLINE | ID: mdl-38634131

ABSTRACT

Cannabis and synthetic cannabinoid consumption is increasing worldwide. Cannabis contains numerous phytocannabinoids that act on the G-protein-coupled cannabinoid receptors type 1 (CB1R) and type 2 (CB2R) expressed throughout the body, including the kidney. Essentially every organ, including the kidney, produces endocannabinoids (ECs), endogenous ligands to these receptors. Cannabinoids acutely increase urine output in rodents and humans, thus potentially influencing total-body water and electrolyte homeostasis. As the kidney collecting duct (CD) regulates total body water, acid/base, and electrolyte balance through specific functions of principal cells (PCs) and intercalated cells (ICs), we examined the cell-specific immunolocalization of CB1R in the mouse CD. Antibodies against either the C-terminus or N-terminus of CB1R consistently labeled AQP2(-) cells in the cortical and medullary CD, and thus presumably ICs. Given the well-established role of ICs in urinary acidification, we utilized a clearance approach in mice that were acid-loaded with 280 mM NH4Cl for 7d and non-acid-loaded mice treated with the cannabinoid receptor agonist, WIN55,212-2 (WIN), or a vehicle control. While WIN had no effect on urinary acidification, these WIN-treated mice had less apical+subapical AQP2 expression in PCs compared to controls and developed an acute diabetes insipidus (DI) associated with the excretion of large volumes of dilute urine. Mice maximally concentrated their urine when WIN + 1-desamino-8-d-arginine-vasopressin (desmopressin, DDAVP) were co-administered, consistent with central rather than nephrogenic DI. Although ICs express CB1R, the physiologic role of CB1R in this cell type remains to be determined.

4.
J Clin Invest ; 134(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38426496

ABSTRACT

Ca2+-activated BK channels in renal intercalated cells (ICs) mediate luminal flow-induced K+ secretion (FIKS), but how ICs sense increased flow remains uncertain. We examined whether PIEZO1, a mechanosensitive Ca2+-permeable channel expressed in the basolateral membranes of ICs, is required for FIKS. In isolated cortical collecting ducts (CCDs), the mechanosensitive cation-selective channel inhibitor GsMTx4 dampened flow-induced increases in intracellular Ca2+ concentration ([Ca2+]i), whereas the PIEZO1 activator Yoda1 increased [Ca2+]i and BK channel activity. CCDs from mice fed a high-K+ (HK) diet exhibited a greater Yoda1-dependent increase in [Ca2+]i than CCDs from mice fed a control K+ diet. ICs in CCDs isolated from mice with a targeted gene deletion of Piezo1 in ICs (IC-Piezo1-KO) exhibited a blunted [Ca2+]i response to Yoda1 or increased flow, with an associated loss of FIKS in CCDs. Male IC-Piezo1-KO mice selectively exhibited an increased blood [K+] in response to an oral K+ bolus and blunted urinary K+ excretion following a volume challenge. Whole-cell expression of BKα subunit was reduced in ICs of IC-Piezo1-KO mice fed an HK diet. We conclude that PIEZO1 mediates flow-induced basolateral Ca2+ entry into ICs, is upregulated in the CCD in response to an HK diet, and is necessary for FIKS.


Subject(s)
Kidney Tubules, Collecting , Male , Mice , Animals , Kidney Tubules, Collecting/metabolism , Large-Conductance Calcium-Activated Potassium Channels/genetics , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Calcium/metabolism , Nephrons/metabolism , Kidney/metabolism , Ion Channels/genetics , Ion Channels/metabolism
5.
bioRxiv ; 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38405735

ABSTRACT

The ENaC gamma subunit is essential for homeostasis of Na + , K + , and body fluid. Dual subunit cleavage before and after a short inhibitory tract allows dissociation of this tract, increasing channel open probability (P O ), in vitro . Cleavage proximal to the tract occurs at a furin recognition sequence ( 143 RKRR 146 in mouse). Loss of furin-mediated cleavage prevents in vitro activation of the channel by proteolysis at distal sites. We hypothesized that 143 RKRR 146 mutation to 143 QQQQ 146 ( Q4 ) in 129/Sv mice would reduce ENaC P O , impair flow-stimulated flux of Na + (J Na ) and K + (J K ) in perfused collecting ducts, reduce colonic amiloride-sensitive short circuit current (I SC ), and impair Na + , K + , and body fluid homeostasis. Immunoblot of Q4/Q4 mouse kidney lysates confirmed loss of a band consistent in size with the furin-cleaved proteolytic fragment. However, Q4/Q4 male mice on a low Na + diet did not exhibit altered ENaC P O or flow-induced J Na , though flow-induced J K modestly decreased. Colonic amiloride-sensitive I SC in Q4/Q4 mice was not altered. Q4/Q4 males, but not females, exhibited mildly impaired fluid volume conservation when challenged with a low Na + diet. Blood Na + and K + were unchanged on a regular, low Na + , or high K + diet. These findings suggest that biochemical evidence of gamma subunit cleavage should not be used in isolation to evaluate ENaC activity. Further, factors independent of gamma subunit cleavage modulate channel P O and the influence of ENaC on Na + , K + , and fluid volume homeostasis in 129/Sv mice, in vivo .

6.
bioRxiv ; 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37790468

ABSTRACT

Sodium and fluid retention in liver disease is classically thought to result from reduced effective circulating volume and stimulation of the renin-angiotensin-aldosterone system (RAAS). Aldosterone dives Na+ retention by activating the mineralocorticoid receptor and promoting the maturation and apical surface expression of the epithelial Na+ channel (ENaC), found in the aldosterone-sensitive distal nephron. However, evidence of fluid retention without RAAS activation suggests the involvement of additional mechanisms. Liver disease can greatly increase plasma and urinary bile acid concentrations and have been shown to activate ENaC in vitro. We hypothesize that elevated bile acids in liver disease activate ENaC and drive fluid retention independent of RAAS. We therefore increased circulating bile acids in mice through bile duct ligation (BDL) and measured effects on urine and body composition, while using spironolactone to antagonize the mineralocorticoid receptor. We found BDL lowered blood [K+] and hematocrit, and increased benzamil-sensitive natriuresis compared to sham, consistent with ENaC activation. BDL mice also gained significantly more body water. Blocking ENaC reversed fluid gains in BDL mice but had no effect in shams. In isolated collecting ducts from rabbits, taurocholic acid stimulated net Na+ absorption but had no effect on K+ secretion or flow-dependent ion fluxes. Our results provide experimental evidence for a novel aldosterone-independent mechanism for sodium and fluid retention in liver disease which may provide additional therapeutic options for liver disease patients.

7.
Am J Physiol Renal Physiol ; 325(6): F695-F706, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37767571

ABSTRACT

Kidney organoids are three-dimensional structures generated from pluripotent stem cells (PSCs) that are capable of recapitulating the major structures of mammalian kidneys. As this technology is expected to be a promising tool for studying renal biology, drug discovery, and regenerative medicine, the functional capacity of kidney organoids has emerged as a critical question in the field. Kidney organoids produced using several protocols harbor key structures of native kidneys. Here, we review the current state, recent advances, and future challenges in the functional characterization of kidney organoids, strategies to accelerate and enhance kidney organoid functions, and access to PSC resources to advance organoid research. The strategies to construct physiologically relevant kidney organoids include the use of organ-on-a-chip technologies that integrate fluid circulation and improve organoid maturation. These approaches result in increased expression of the major tubular transporters and elements of mechanosensory signaling pathways suggestive of improved functionality. Nevertheless, continuous efforts remain crucial to create kidney tissue that more faithfully replicates physiological conditions for future applications in kidney regeneration medicine and their ethical use in patient care.NEW & NOTEWORTHY Kidney organoids are three-dimensional structures derived from stem cells, mimicking the major components of mammalian kidneys. Although they show great promise, their functional capacity has become a critical question. This review explores the advancements and challenges in evaluating and enhancing kidney organoid function, including the use of organ-on-chip technologies, multiomics data, and in vivo transplantation. Integrating these approaches to further enhance their physiological relevance will continue to advance disease modeling and regenerative medicine applications.


Subject(s)
Kidney , Pluripotent Stem Cells , Animals , Humans , Kidney/physiology , Regeneration , Nephrons , Organoids/metabolism , Mammals
8.
Am J Physiol Cell Physiol ; 324(3): C757-C768, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36745528

ABSTRACT

Kidney organoids cultured on adherent matrices in the presence of superfusate flow generate vascular networks and exhibit more mature podocyte and tubular compartments compared with static controls (Homan KA, Gupta N, Kroll KT, Kolesky DB, Skylar-Scott M, Miyoshi T, Mau D, Valerius MT, Ferrante T, Bonventre JV, Lewis JA, Morizane R. Nat Methods 16: 255-262, 2019; Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ, Ferguson C, Parton RG, Wolvetang EJ, Roost MS, Chuva de Sousa Lopes SM, Little MH. Nature 526: 564-568, 2015.). However, their physiological function has yet to be systematically investigated. Here, we measured mechano-induced changes in intracellular Ca2+ concentration ([Ca2+]i) in tubules isolated from organoids cultured for 21-64 days, microperfused in vitro or affixed to the base of a specimen chamber, and loaded with fura-2 to measure [Ca2+]i. A rapid >2.5-fold increase in [Ca2+]i from a baseline of 195.0 ± 22.1 nM (n = 9; P ≤ 0.001) was observed when microperfused tubules from organoids >40 days in culture were subjected to luminal flow. In contrast, no response was detected in tubules isolated from organoids <30 days in culture. Nonperfused tubules (41 days) subjected to a 10-fold increase in bath flow rate also exhibited a threefold increase in [Ca2+]i from baseline (P < 0.001). Mechanosensitive PIEZO1 channels contribute to the flow-induced [Ca2+]i response in mouse distal tubule (Carrisoza-Gaytan R, Dalghi MG, Apodaca GL, Kleyman TR, Satlin LM. The FASEB J 33: 824.25, 2019.). Immunodetectable apical and basolateral PIEZO1 was identified in tubular structures by 21 days in culture. Basolateral PIEZO1 appeared to be functional as basolateral exposure of nonperfused tubules to the PIEZO1 activator Yoda 1 increased [Ca2+]i (P ≤ 0.001) in segments from organoids cultured for >30 days, with peak [Ca2+]i increasing with advancing days in culture. These results are consistent with a maturational increase in number and/or activity of flow/stretch-sensitive Ca2+ channels, including PIEZO1, in tubules of static organoids in culture.


Subject(s)
Calcium Signaling , Calcium , Kidney Tubules , Animals , Mice , Calcium/metabolism , Fura-2 , Ion Channels/metabolism , Kidney/metabolism , Kidney Tubules/metabolism
9.
Front Cell Dev Biol ; 10: 978888, 2022.
Article in English | MEDLINE | ID: mdl-36046340

ABSTRACT

Kidney organoids derived from hPSCs have opened new opportunities to develop kidney models for preclinical studies and immunocompatible kidney tissues for regeneration. Organoids resemble native nephrons that consist of filtration units and tubules, yet little is known about the functional capacity of these organoid structures. Transcriptomic analyses provide insight into maturation and transporter activities that represent kidney functions. However, functional assays in organoids are necessary to demonstrate the activity of these transport proteins in live tissues. The three-dimensional (3D) architecture adds complexity to real-time assays in kidney organoids. Here, we develop a functional assay using live imaging to assess transepithelial transport of rhodamine 123 (Rh123), a fluorescent substrate of P-glycoprotein (P-gp), in organoids affixed to coverslip culture plates for accurate real-time observation. The identity of organoid structures was probed using Lotus Tetragonolobus Lectin (LTL), which binds to glycoproteins present on the surface of proximal tubules. Within 20 min of the addition of Rh123 to culture media, Rh123 accumulated in the tubular lumen of organoids. Basolateral-to-apical accumulation of the dye/marker was reduced by pharmacologic inhibition of MDR1 or OCT2, and OCT2 inhibition reduced the Rh123 uptake. The magnitude of Rh123 transport was maturation-dependent, consistent with MDR1 expression levels assessed by RNA-seq and immunohistochemistry. Specifically, organoids on day 21 exhibit less accumulation of Rh123 in the lumen unlike later-stage organoids from day 30 of differentiation. Our work establishes a live functional assessment in 3D kidney organoids, enabling the functional phenotyping of organoids in health and disease.

10.
Sci Adv ; 8(23): eabn4965, 2022 06 10.
Article in English | MEDLINE | ID: mdl-35675394

ABSTRACT

Kidney Precision Medicine Project (KPMP) is building a spatially specified human kidney tissue atlas in health and disease with single-cell resolution. Here, we describe the construction of an integrated reference map of cells, pathways, and genes using unaffected regions of nephrectomy tissues and undiseased human biopsies from 56 adult subjects. We use single-cell/nucleus transcriptomics, subsegmental laser microdissection transcriptomics and proteomics, near-single-cell proteomics, 3D and CODEX imaging, and spatial metabolomics to hierarchically identify genes, pathways, and cells. Integrated data from these different technologies coherently identify cell types/subtypes within different nephron segments and the interstitium. These profiles describe cell-level functional organization of the kidney following its physiological functions and link cell subtypes to genes, proteins, metabolites, and pathways. They further show that messenger RNA levels along the nephron are congruent with the subsegmental physiological activity. This reference atlas provides a framework for the classification of kidney disease when multiple molecular mechanisms underlie convergent clinical phenotypes.


Subject(s)
Kidney Diseases , Kidney , Humans , Kidney/pathology , Kidney Diseases/metabolism , Metabolomics/methods , Proteomics/methods , Transcriptome
11.
Am J Physiol Renal Physiol ; 321(2): F245-F254, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34229479

ABSTRACT

Large-conductance K+ (BK) channels expressed in intercalated cells (ICs) in the aldosterone-sensitive distal nephron (ASDN) mediate flow-induced K+ secretion. In the ASDN of mice and rabbits, IC BK channel expression and activity increase with a high-K+ diet. In cell culture, the long isoform of with-no-lysine kinase 1 (L-WNK1) increases BK channel expression and activity. Apical L-WNK1 expression is selectively enhanced in ICs in the ASDN of rabbits on a high-K+ diet, suggesting that L-WNK1 contributes to BK channel regulation by dietary K+. We examined the role of IC L-WNK1 expression in enhancing BK channel activity in response to a high-K+ diet. Mice with IC-selective deletion of L-WNK1 (IC-L-WNK1-KO) and littermate control mice were placed on a high-K+ (5% K+, as KCl) diet for 10 or more days. IC-L-WNK1-KO mice exhibited reduced IC apical + subapical α-subunit expression and BK channel-dependent whole cell currents compared with controls. Six-hour urinary K+ excretion in response a saline load was similar in IC-L-WNK1-KO mice and controls. The observations that IC-L-WNK1-KO mice on a high-K+ diet have higher blood K+ concentration and reduced IC BK channel activity are consistent with impaired urinary K+ secretion, demonstrating that IC L-WNK1 has a role in the renal adaptation to a high-K+ diet.NEW & NOTEWORTHY When mice are placed on a high-K+ diet, genetic disruption of the long form of with no lysine kinase 1 (L-WNK1) in intercalated cells reduced relative apical + subapical localization of the large-conductance K+ channel, blunted large-conductance K+ channel currents in intercalated cells, and increased blood K+ concentration. These data confirm an in vivo role of L-WNK1 in intercalated cells in adaptation to a high-K+ diet.


Subject(s)
Kidney/metabolism , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Nephrons/metabolism , Potassium/metabolism , WNK Lysine-Deficient Protein Kinase 1/metabolism , Animals , Ion Transport , Kidney/cytology , Mice , WNK Lysine-Deficient Protein Kinase 1/genetics
12.
Environ Int ; 154: 106414, 2021 09.
Article in English | MEDLINE | ID: mdl-33678412

ABSTRACT

BACKGROUND: For the developing kidney, the prenatal period may represent a critical window of vulnerability to environmental insults resulting in permanent nephron loss. Given that the majority of nephron formation is complete in the 3rd trimester, we set out to test whether 1) prenatal lead exposure is associated with decreased preadolescent kidney function and 2) whether preadolescent obesity acts synergistically with early life lead exposure to reduce kidney function. METHODS: Our study included 453 mother-child pairs participating in the PROGRESS birth cohort. We assessed prenatal blood lead levels (BLLs) in samples collected in the 2nd and 3rd trimesters and at delivery, as well as tibial and patellar bone lead measures assessed one-month postpartum. Preadolescent estimated glomerular filtration rate (eGFR) was derived from serum levels of creatinine and/or cystatin C measured at age 8-12 years. We applied linear regression to assess the relationship between prenatal bone and BLL with preadolescent eGFR, and adjusted for covariates including age, sex, BMI z-score, indoor tobacco smoke exposure, and socioeconomic status. We also examined sex-specific associations and tested for effect modification by BMI status. RESULTS: We observed null associations between prenatal lead exposure and eGFR. However, in interaction analyses we found that among overweight children, there was an inverse association between BLL (assessed at 2nd and 3rd trimester and at delivery) and preadolescent eGFR. For example, among overweight participants, a one ln-unit increase in 2nd trimester BLL was associated with a 10.5 unit decrease in cystatin C-based eGFR (95% CI: -18.1, -2.8; p = 0.008). Regardless of lead exposure, we also observed null relationships between BMI z-score and eGFR overall, as well as among overweight participants. However, among participants with preadolescent obesity, we observed a significant 5.9-unit decrease in eGFR. We observed no evidence of sex-specific effects. CONCLUSIONS: Our findings, if confirmed in other studies, suggest a complex interplay between the combined adverse effects of adiposity and perinatal lead exposure as they relate to adolescent kidney function. Future studies will assess kidney function and adiposity trajectories through adolescence to better understand environmental risk factors for kidney function decline.


Subject(s)
Lead , Adolescent , Body Mass Index , Child , Creatinine , Female , Glomerular Filtration Rate , Humans , Kidney Function Tests , Lead/toxicity , Male , Pregnancy
13.
Epigenomics ; 13(7): 499-512, 2021 04.
Article in English | MEDLINE | ID: mdl-33635093

ABSTRACT

Aims: The authors sought to examine associations between urinary exosomal miRNAs (exo-miRs), emerging biomarkers of renal health, and cardiorenal outcomes in early childhood. Materials & methods: The authors extracted exo-miRs in urine from 88 healthy Mexican children aged 4-6 years. The authors measured associations between 193 exo-miRs and cardiorenal outcomes: systolic/diastolic blood pressure, estimated glomerular filtration rate and urinary sodium and potassium levels. The authors adjusted for age, sex, BMI, socioeconomic status, indoor tobacco smoke exposure and urine specific gravity. Results: Multiple exo-miRs were identified meeting a false discovery rate threshold of q < 0.1. Specifically, three exo-miRs had increased expression with urinary sodium, 17 with urinary sodium-to-potassium ratio and one with decreased estimated glomerular filtration rate. Conclusions: These results highlight urinary exo-miRs as early-life biomarkers of children's cardiorenal health.


Subject(s)
Exosomes/genetics , Heart/physiology , Kidney/physiology , MicroRNAs/urine , Biomarkers/metabolism , Blood Pressure , Child , Child, Preschool , Cohort Studies , Cross-Sectional Studies , Female , Glomerular Filtration Rate , Humans , Male , Potassium/urine , Sodium/urine
14.
Am J Physiol Cell Physiol ; 319(1): C136-C147, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32401606

ABSTRACT

The cortical collecting duct (CCD) of the mammalian kidney plays a major role in the maintenance of total body electrolyte, acid/base, and fluid homeostasis by tubular reabsorption and excretion. The mammalian CCD is heterogeneous, composed of Na+-absorbing principal cells (PCs) and acid-base-transporting intercalated cells (ICs). Perturbations in luminal flow rate alter hydrodynamic forces to which these cells in the cylindrical tubules are exposed. However, most studies of tubular ion transport have been performed in cell monolayers grown on or epithelial sheets affixed to a flat support, since analysis of transepithelial transport in native tubules by in vitro microperfusion requires considerable expertise. Here, we report on the generation and characterization of an in vitro, perfusable three-dimensional kidney CCD model (3D CCD), in which immortalized mouse PC-like mpkCCD cells are seeded within a cylindrical channel embedded within an engineered extracellular matrix and subjected to luminal fluid flow. We find that a tight epithelial barrier composed of differentiated and polarized PCs forms within 1 wk. Immunofluorescence microscopy reveals the apical epithelial Na+ channel ENaC and basolateral Na+/K+-ATPase. On cessation of luminal flow, benzamil-inhibitable cell doming is observed within these 3D CCDs consistent with the presence of ENaC-mediated Na+ absorption. Our 3D CCD provides a geometrically and microphysiologically relevant platform for studying the development and physiology of renal tubule segments.


Subject(s)
Kidney Tubules, Collecting/anatomy & histology , Kidney Tubules, Collecting/physiology , Models, Biological , Perfusion/methods , Printing, Three-Dimensional , Animals , Biological Transport/physiology , Cell Line, Transformed , Mice , Microscopy, Fluorescence/methods
15.
JCI Insight ; 5(8)2020 04 07.
Article in English | MEDLINE | ID: mdl-32255763

ABSTRACT

BK channels are expressed in intercalated cells (ICs) and principal cells (PCs) in the cortical collecting duct (CCD) of the mammalian kidney and have been proposed to be responsible for flow-induced K+ secretion (FIKS) and K+ adaptation. To examine the IC-specific role of BK channels, we generated a mouse with targeted disruption of the pore-forming BK α subunit (BKα) in ICs (IC-BKα-KO). Whole cell charybdotoxin-sensitive (ChTX-sensitive) K+ currents were readily detected in control ICs but largely absent in ICs of IC-BKα-KO mice. When placed on a high K+ (HK) diet for 13 days, blood [K+] was significantly greater in IC-BKα-KO mice versus controls in males only, although urinary K+ excretion rates following isotonic volume expansion were similar in males and females. FIKS was present in microperfused CCDs isolated from controls but was absent in IC-BKα-KO CCDs of both sexes. Also, flow-stimulated epithelial Na+ channel-mediated (ENaC-mediated) Na+ absorption was greater in CCDs from female IC-BKα-KO mice than in CCDs from males. Our results confirm a critical role of IC BK channels in FIKS. Sex contributes to the capacity for adaptation to a HK diet in IC-BKα-KO mice.


Subject(s)
Kidney Tubules, Collecting/metabolism , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , Potassium/metabolism , Animals , Cell Line , Charybdotoxin/pharmacology , Ion Transport/drug effects , Ion Transport/genetics , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/antagonists & inhibitors , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/genetics , Mice , Mice, Knockout
16.
Am J Physiol Renal Physiol ; 317(4): F815-F824, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31364378

ABSTRACT

Downregulation of heme oxygenase-1 (HO-1), cyclooxygenase-2 (COX2), and nitric oxide synthase-2 (NOS2) in the kidneys of Dahl rodents causes salt sensitivity, while restoring their expression aids in Na+ excretion and blood pressure reduction. Loading cholesterol into collecting duct (CD) cells represses fluid shear stress (FSS)-mediated COX2 activity. Thus, we hypothesized that cholesterol represses flow-responsive genes necessary to effectuate Na+ excretion. To this end, CD cells were used to test whether FSS induces these genes and if cholesterol loading represses them. Mice fed either 0% or 1% cholesterol diet were injected with saline, urine volume and electrolytes were measured, and renal gene expression determined. FSS-exposed CD cells demonstrated increases in HO-1 mRNA by 350-fold, COX2 by 25-fold, and NOS2 by 8-fold in sheared cells compared with static cells (P < 0.01). Immunoblot analysis of sheared cells showed increases in HO-1, COX2, and NOS2 protein, whereas conditioned media contained more HO-1 and PGE2 than static cells. Cholesterol loading repressed the sheared mediated protein abundance of HO-1 and NOS2 as well as HO-1 and PGE2 concentrations in media. In cholesterol-fed mice, urine volume was less at 6 h after injection of isotonic saline (P < 0.05). Urinary Na+ concentration, urinary K+ concentration, and osmolality were greater, whereas Na+ excretion was less, at the 6-h urine collection time point in cholesterol-fed versus control mice (P < 0.05). Renal cortical and medullary HO-1 (P < 0.05) and NOS2 (P < 0.05) mRNA were repressed in cholesterol-fed compared with control mice. Cholesterol acts to repress flow induced natriuretic gene expression, and this effect, in vivo, may contribute to renal Na+ avidity.


Subject(s)
Cholesterol/pharmacology , Gene Expression/drug effects , Kidney/drug effects , Kidney/metabolism , Animals , Blood Pressure , Cell Line , Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Heme Oxygenase (Decyclizing)/metabolism , Kidney Tubules, Collecting/metabolism , Mice , Nitric Oxide Synthase Type II/metabolism , Potassium/urine , Rats , Rats, Inbred Dahl , Sodium/urine , Sodium Chloride, Dietary , Urodynamics/drug effects
17.
Am J Physiol Renal Physiol ; 317(2): F303-F321, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31166705

ABSTRACT

The proper function of the organs that make up the urinary tract (kidneys, ureters, bladder, and urethra) depends on their ability to sense and respond to mechanical forces, including shear stress and wall tension. However, we have limited understanding of the mechanosensors that function in these organs and the tissue sites in which these molecules are expressed. Possible candidates include stretch-activated PIEZO channels (PIEZO1 and PIEZO2), which have been implicated in mechanically regulated body functions including touch sensation, proprioception, lung inflation, and blood pressure regulation. Using reporter mice expressing a COOH-terminal fusion of Piezo1 with the sequence for the tandem-dimer Tomato gene, we found that PIEZO1 is expressed in the kidneys, ureters, bladder, and urethra as well as organs in close proximity, including the prostate, seminal vesicles and ducts, ejaculatory ducts, and the vagina. We further found that PIEZO1 expression is not limited to one cell type; it is observed in the endothelial and parietal cells of the renal corpuscle, the basolateral surfaces of many of the epithelial cells that line the urinary tract, the interstitial cells of the bladder and ureters, and populations of smooth and striated muscle cells. We propose that in the urinary tract, PIEZO1 likely functions as a mechanosensor that triggers responses to wall tension.


Subject(s)
Ion Channels/metabolism , Urinary Tract/metabolism , Animals , Female , Gene Expression Regulation , Genes, Reporter , Ion Channels/genetics , Male , Mechanotransduction, Cellular , Mice, Inbred C57BL , Mice, Transgenic , Pressure , Stress, Mechanical , Tissue Distribution , Urinary Tract/cytology
18.
PLoS One ; 14(12): e0227219, 2019.
Article in English | MEDLINE | ID: mdl-31891650

ABSTRACT

Infants born prematurely or with low birth weights are more susceptible to kidney dysfunction throughout their lives. Multiple proteins measured in urine are noninvasive biomarkers of subclinical kidney damage, but few studies have examined the joint effects of multiple biomarkers. We conducted an exploratory study of 103 children in the Programing Research in Obesity, Growth, Environment, and Social Stressors (PROGRESS) longitudinal birth cohort, and measured nine proteins selected a priori in banked spot urine samples collected at ages 4-6. The goal of our study was to explore the combined effects of kidney damage biomarkers previously associated with birth outcomes. To do this, we generated kidney biomarker indices using weighted quantile sum regression and assessed associations with length of gestation or birth weight. A decile increase in each kidney biomarker index was associated with 2-day shorter gestations (ß = -2.0, 95% CI: -3.2, -0.9) and 59-gram lower birth weights (ß = -58.5, 95% CI: -98.3, -18.7), respectively. Weights highlighting the contributions showed neutrophil gelatinase-associated lipocalin (NGAL) (60%) and osteopontin (19%) contributed most to the index derived for gestational age. NGAL (66%) and beta-2-microglobulin (10%) contributed most to the index derived for birth weight. Joint analyses of multiple kidney biomarkers can provide integrated measures of kidney dysfunction and improved statistical assessments compared to biomarkers assessed individually. Additionally, shorter gestations and lower birth weights may contribute to subclinical kidney damage measurable in childhood.


Subject(s)
Birth Weight , Gestational Age , Infant, Premature , Kidney Diseases/diagnosis , Biomarkers/urine , Child , Child, Preschool , Early Diagnosis , Female , Humans , Kidney Diseases/urine , Longitudinal Studies , Male , Mexico
19.
Environ Int ; 120: 464-471, 2018 11.
Article in English | MEDLINE | ID: mdl-30145310

ABSTRACT

BACKGROUND: High blood pressure (BP) in childhood is frequently renal in origin and a risk factor for adult hypertension and cardiovascular disease. Shorter gestations are a known risk factor for increased BP in adults and children, due in part to a nephron deficit in children born preterm. As nephrogenesis is incomplete until 36 weeks gestation, prenatal lead exposure occurring during a susceptible period of renal development may contribute to programming for later life renal disease. The relationship between shorter gestation and children's BP has not yet been explored to identify i) critical windows using nonlinear piecewise models or ii) combined with other early life risk factors such as prenatal lead exposure. OBJECTIVES: (1) To evaluate the nonlinear relationship between lower gestational age and childhood BP measured at 4-6 years of age, and (2) to investigate modification by prenatal lead exposure. METHODS: In a prospective longitudinal birth cohort, we assessed 565 children between 4 and 6 years of age (mean: 4.8 years) in the PROGRESS cohort in Mexico City, Mexico. Gestational age at delivery was calculated using maternal report of last menstrual period (LMP) and confirmed with Capurro physical examination at birth. We measured pregnant women's blood lead levels (BLLs) in the second trimester via inductively coupled plasma-mass spectrometry and children's BP using an automated device. We performed both linear and nonlinear piecewise regression analyses to examine associations of gestational age with children's BP adjusting for children's age, sex, height, prenatal exposure to smoke, and maternal socioeconomic status. We stratified to assess modification by prenatal lead exposure, and used a data-adaptive approach to identify a lead cutpoint. RESULTS: Maternal second trimester BLLs ranged from 0.7 to 17.8 µg/dL with 112 (20%) women above the CDC guideline level of 5 µg/dL. In adjusted linear regression models, a one week reduction in gestational age was associated with a 0.5 mm Hg (95%CI: 0.2, 0.8) increase in SBP and a 0.4 mm Hg (95%CI 0.1, 0.6) increase in DBP. Our nonlinear models suggested evidence for different magnitude estimates on either side of an estimated join-point at 35.9 weeks' gestation, but did not reach statistical significance. However, when stratified by prenatal lead exposure, we identified a cutpoint lead level of concern of 2.5 µg/dL that suggested an interaction between gestational age and blood lead. Specifically, for BLLs ≥ 2.5 µg/dL, SBP was 1.6 (95%CI: 0.3, 2.9) mm Hg higher per each week reduction in gestational age among children born before 37.0 weeks; and among children born after 37.0 weeks, this relationship was attenuated yet remained significant [ß: 0.9, 95%CI (0.2, 1.6)]. At BLLs below 2.5 µg/dL, there was no appreciable association between lower gestational age and SBP. CONCLUSIONS: Our findings suggest that shorter gestation combined with higher prenatal lead exposure contributes to a higher risk of increased SBP at 4-6 years of age, particularly among infants born <37 weeks gestation. Our results underscore the importance of preventing prenatal lead exposure - even levels as low as 2.5 µg/dL - especially among pregnant women at risk for preterm birth. Given that high BP in childhood is a risk factor for adult hypertension and cardiovascular disease later in life, these results may have implications that extend across the life span.


Subject(s)
Environmental Pollutants/adverse effects , Gestational Age , Hypertension/epidemiology , Lead/adverse effects , Prenatal Exposure Delayed Effects , Adolescent , Adult , Blood Pressure/drug effects , Child , Child, Preschool , Cohort Studies , Environmental Pollutants/blood , Female , Humans , Infant, Newborn , Lead/blood , Male , Maternal-Fetal Exchange , Mexico/epidemiology , Pregnancy , Prospective Studies , Young Adult
20.
Mol Pharmacol ; 94(2): 926-937, 2018 08.
Article in English | MEDLINE | ID: mdl-29895592

ABSTRACT

The inward rectifier potassium (Kir) channel Kir4.1 (KCNJ10) carries out important physiologic roles in epithelial cells of the kidney, astrocytes in the central nervous system, and stria vascularis of the inner ear. Loss-of-function mutations in KCNJ10 lead to EAST/SeSAME syndrome, which is characterized by epilepsy, ataxia, renal salt wasting, and sensorineural deafness. Although genetic approaches have been indispensable for establishing the importance of Kir4.1 in the normal function of these tissues, the availability of pharmacological tools for acutely manipulating the activity of Kir4.1 in genetically normal animals has been lacking. We therefore carried out a high-throughput screen of 76,575 compounds from the Vanderbilt Institute of Chemical Biology library for small-molecule modulators of Kir4.1. The most potent inhibitor identified was 2-(2-bromo-4-isopropylphenoxy)-N-(2,2,6,6-tetramethylpiperidin-4-yl)acetamide (VU0134992). In whole-cell patch-clamp electrophysiology experiments, VU0134992 inhibits Kir4.1 with an IC50 value of 0.97 µM and is 9-fold selective for homomeric Kir4.1 over Kir4.1/5.1 concatemeric channels (IC50 = 9 µM) at -120 mV. In thallium (Tl+) flux assays, VU0134992 is greater than 30-fold selective for Kir4.1 over Kir1.1, Kir2.1, and Kir2.2; is weakly active toward Kir2.3, Kir6.2/SUR1, and Kir7.1; and is equally active toward Kir3.1/3.2, Kir3.1/3.4, and Kir4.2. This potency and selectivity profile is superior to Kir4.1 inhibitors amitriptyline, nortriptyline, and fluoxetine. Medicinal chemistry identified components of VU0134992 that are critical for inhibiting Kir4.1. Patch-clamp electrophysiology, molecular modeling, and site-directed mutagenesis identified pore-lining glutamate 158 and isoleucine 159 as critical residues for block of the channel. VU0134992 displayed a large free unbound fraction (fu) in rat plasma (fu = 0.213). Consistent with the known role of Kir4.1 in renal function, oral dosing of VU0134992 led to a dose-dependent diuresis, natriuresis, and kaliuresis in rats. Thus, VU0134992 represents the first in vivo active tool compound for probing the therapeutic potential of Kir4.1 as a novel diuretic target for the treatment of hypertension.


Subject(s)
Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , Potassium Channels, Inwardly Rectifying/chemistry , Small Molecule Libraries/administration & dosage , Small Molecule Libraries/pharmacology , Animals , Binding Sites , Diuretics/chemistry , Electrolytes , HEK293 Cells , Humans , Male , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Mutagenesis, Site-Directed , Potassium Channels, Inwardly Rectifying/genetics , Rats , Small Molecule Libraries/chemistry , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...