Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 15(7): e0236185, 2020.
Article in English | MEDLINE | ID: mdl-32730344

ABSTRACT

Fluorescent markers are a powerful tool and have been widely applied in biology for different purposes. The genome sequence of Xanthomonas citri subsp. citri (X. citri) revealed that approximately 30% of the genes encoded hypothetical proteins, some of which could play an important role in the success of plant-pathogen interaction and disease triggering. Therefore, revealing their functions is an important strategy to understand the bacterium pathways and mechanisms involved in plant-host interaction. The elucidation of protein function is not a trivial task, but the identification of the subcellular localization of a protein is key to understanding its function. We have constructed an integrative vector, pMAJIIc, under the control of the arabinose promoter, which allows the inducible expression of red fluorescent protein (mCherry) fusions in X. citri, suitable for subcellular localization of target proteins. Fluorescence microscopy was used to track the localization of VrpA protein, which was visualized surrounding the bacterial outer membrane, and the GyrB protein, which showed a diffused cytoplasmic localization, sometimes with dots accumulated near the cellular poles. The integration of the vector into the amy locus of X. citri did not affect bacterial virulence. The vector could be stably maintained in X. citri, and the disruption of the α-amylase gene provided an ease screening method for the selection of the transformant colonies. The results demonstrate that the mCherry-containing vector here described is a powerful tool for bacterial protein localization in cytoplasmic and periplasmic environments.


Subject(s)
Bacterial Proteins/metabolism , Cytoplasm/metabolism , Periplasm/metabolism , Recombinant Fusion Proteins/metabolism , Xanthomonas/metabolism , Arabinose/pharmacology , Chromosomes, Bacterial/genetics , Genetic Vectors/metabolism , Microbial Viability/drug effects , Protein Transport/drug effects , Starch/metabolism , Subcellular Fractions/drug effects , Xanthomonas/pathogenicity
2.
J Proteome Res ; 17(7): 2358-2369, 2018 07 06.
Article in English | MEDLINE | ID: mdl-29775065

ABSTRACT

Aggressiveness in honeybees seems to be regulated by multiple genes, under the influence of different factors, such as polyethism of workers, environmental factors, and response to alarm pheromones, creating a series of behavioral responses. It is suspected that neuropeptides seem to be involved with the regulation of the aggressive behavior. The role of allatostatin and tachykinin-related neuropeptides in honeybee brain during the aggressive behavior is unknown, and thus worker honeybees were stimulated to attack and to sting leather targets hung in front of the colonies. The aggressive individuals were collected and immediately frozen in liquid nitrogen; the heads were removed and sliced at sagittal plan. The brain slices were submitted to MALDI spectral imaging analysis, and the results of the present study reported the processing of the precursors proteins into mature forms of the neuropeptides AmAST A (59-76) (AYTYVSEYKRLPVYNFGL-NH2), AmAST A (69-76) (LPVYNFGL-NH2), AmTRP (88-96) (APMGFQGMR-NH2), and AmTRP (254-262) (ARMGFHGMR-NH2), which apparently acted in different neuropils of the honeybee brain during the aggressive behavior, possibly taking part in the neuromodulation of different aspects of this complex behavior. These results were biologically validated by performing aggressiveness-related behavioral assays using young honeybee workers that received 1 ng of AmAST A (69-76) or AmTRP (88-96) via hemocele. The young workers that were not expected to be aggressive individuals presented a complete series of aggressive behaviors in the presence of the neuropeptides, corroborating the hypothesis that correlates the presence of mature AmASTs A and AmTRPs in the honeybee brain with the aggressiveness of this insect.


Subject(s)
Bees/chemistry , Brain Chemistry/drug effects , Brain/diagnostic imaging , Neuropeptides/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Aggression/drug effects , Animals , Behavior, Animal/drug effects , Insect Proteins , Neuropeptides/pharmacology , Neuropeptides/physiology , Neuropil , Pheromones/metabolism , Pheromones/pharmacology , Tachykinins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL