Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
Arch Dermatol Res ; 316(5): 156, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734816

ABSTRACT

Atopic dermatitis (AD) is an inflammatory skin disease with intense pruritus, and chronic skin colonization by Staphylococcus aureus. To understand the inflammatory status in AD, we investigated the inflammasome complex, that activates ASC (Apoptosis-associated speck-like protein containing a CARD), caspase-1 and GSDMD (gasdermin-D), and production of IL-1ß and IL-18. We aimed to evaluate the expression of the inflammasome pathway in the skin of adults with AD. Thirty patients with moderate to severe AD and 20 healthy controls were enrolled in the study. We performed the analysis of the inflammasome components NLRP1, NLRP3, AIM-2, IL-1ß, IL-18, Caspase-1, ASC, GSDMD, and CD68 expression (macrophage marker) by immunohistochemistry and immunofluorescence. The main findings included increased expression of NLRP3, NLRP1 and AIM-2 at dermal level of severe AD; augmented IL-18 and IL-1ß expression at epidermis of moderate and severe patients, and in the dermis of severe AD; augmented expression of ASC, caspase-1 and GSDMD in both epidermis and dermis of moderate and severe AD. We detected positive correlation between caspase-1, GSDMD and IL-1ß (epidermis) and caspase-1 (dermis) and AD severity; NLRP3, AIM-2 and IL-1ß, and NLRP3 with IL-18 in the epidermis; ASC, GSDMD and IL-1ß, and NLRP3, AIM-2, caspase-1, and IL-18 in the dermis. We also evidenced the presence of CD68+ macrophages secreting GSDMD, ASC and IL-1ß in moderate and severe AD. Cutaneous macrophages, early detected in moderate AD, have its role in the disease inflammatory mechanisms. Our study indicates a canonical activation pathway of inflammasomes, reinforced by the chronic status of inflammation in AD. The analysis of the inflammasome complex evidenced an imbalance in its regulation, with increased expression of the evaluated components, which is remarkably in severe AD, emphasizing its relevance as potential disease biomarkers and targets for immunomodulatory interventions.


Subject(s)
CARD Signaling Adaptor Proteins , Caspase 1 , Dermatitis, Atopic , Inflammasomes , Interleukin-18 , Interleukin-1beta , Intracellular Signaling Peptides and Proteins , Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein , Phosphate-Binding Proteins , Humans , Inflammasomes/metabolism , Inflammasomes/immunology , CARD Signaling Adaptor Proteins/metabolism , Dermatitis, Atopic/immunology , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/pathology , Macrophages/metabolism , Macrophages/immunology , Interleukin-1beta/metabolism , Male , Female , Intracellular Signaling Peptides and Proteins/metabolism , Phosphate-Binding Proteins/metabolism , Adult , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Interleukin-18/metabolism , Caspase 1/metabolism , Skin/pathology , Skin/immunology , Skin/metabolism , Severity of Illness Index , Middle Aged , Antigens, Differentiation, Myelomonocytic/metabolism , Young Adult , Apoptosis Regulatory Proteins/metabolism , Antigens, CD/metabolism , NLR Proteins/metabolism , Case-Control Studies , Epidermis/immunology , Epidermis/metabolism , Epidermis/pathology , Gasdermins , CD68 Molecule , DNA-Binding Proteins
2.
Microorganisms ; 12(3)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38543582

ABSTRACT

Atopic dermatitis (AD) is a chronic and relapsing inflammatory cutaneous disease. The role of host defense and microbial virulence factors in Staphylococcus aureus skin colonization, infection, and inflammation perpetuation in AD remains an area of current research focus. Extracellular vesicles (EV) mediate cell-to-cell communication by transporting and delivering bioactive molecules, such as nucleic acids, proteins, and enzymes, to recipient cells. Staphylococcus aureus spontaneously secretes extracellular vesicles (SA-derived EVs), which spread throughout the skin layers. Previous research has shown that SA-derived EVs from AD patients can trigger cytokine secretion in keratinocytes, shape the recruitment of neutrophils and monocytes, and induce inflammatory AD-type lesions in mouse models, in addition to their role as exogenous worsening factors for the disease. In this review article, we aim to examine the role of SA-derived EVs in AD physiopathology and its progression, highlighting the recent research in the field and exploring the potential crosstalk between the host and the microbiota.

3.
Sci Rep ; 14(1): 2663, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38302650

ABSTRACT

Atopic dermatitis (AD) is a complex, multifactorial skin disease, characterized by pruritus and predominant Th2 inflammation. Innate immune cells may play a role in AD development and are composed of granulocytes, macrophages, innate-like T cells, and innate lymphoid cells. This study investigates the phenotypic and functional profile of circulating CLA+ natural killer (NK) cells and its role in the skin-homing to NK cells infiltrated in adults' skin with AD. We selected 44 AD patients and 27 non-AD volunteers for the study. The results showed increased frequencies of both CLA+CD56bright and CLA+CD56dim NK cell populations in the peripheral blood, mainly in severe AD patients. Upon SEB stimulation, we observed an augmented percentage of CLA+CD56dim NK cells expressing CD107a, IFN-γ, IL-10, and TNF, reinforcing the role of staphylococcal enterotoxins in AD pathogenesis. Additionally, we demonstrated increased dermal expression of both NK cell markers NCAM-1/CD56 and pan-granzyme, corroborating the skin-homing, mostly in severe AD. Further studies are necessary to elucidate the potential role of NK cells in the chronification of the inflammatory process in AD skin, as well as their possible relationship with staphylococcal enterotoxins, and as practicable therapeutic targets.


Subject(s)
Dermatitis, Atopic , Adult , Humans , Immunity, Innate , Antigens, Differentiation, T-Lymphocyte/metabolism , Killer Cells, Natural/metabolism , Enterotoxins
5.
Front Immunol ; 15: 1307546, 2024.
Article in English | MEDLINE | ID: mdl-38361945

ABSTRACT

Zika virus (ZIKV) is a re-emerging pathogen with high morbidity associated to congenital infection. Despite the scientific advances since the last outbreak in the Americas, there are no approved specific treatment or vaccines. As the development of an effective prophylactic approach remains unaddressed, DNA vaccines surge as a powerful and attractive candidate due to the efficacy of sequence optimization in achieving strong immune response. In this study, we developed four DNA vaccine constructs encoding the ZIKV prM/M (pre-membrane/membrane) and E (envelope) proteins in conjunction with molecular adjuvants. The DNA vaccine candidate (called ZK_ΔSTP), where the entire membrane-anchoring regions were completely removed, was far more immunogenic compared to their counterparts. Furthermore, inclusion of the tPA-SP leader sequence led to high expression and secretion of the target vaccine antigens, therefore contributing to adequate B cell stimulation. The ZK_ΔSTP vaccine induced high cellular and humoral response in C57BL/6 adult mice, which included high neutralizing antibody titers and the generation of germinal center B cells. Administration of ZK-ΔSTP incorporating aluminum hydroxide (Alum) adjuvant led to sustained neutralizing response. In consistency with the high and long-term protective response, ZK_ΔSTP+Alum protected adult mice upon viral challenge. Collectively, the ZK_ΔSTP+Alum vaccine formulation advances the understanding of the requirements for a successful and protective vaccine against flaviviruses and is worthy of further translational studies.


Subject(s)
Alum Compounds , Vaccines, DNA , Viral Vaccines , Zika Virus Infection , Zika Virus , Animals , Mice , Zika Virus/genetics , Antibodies, Neutralizing , Antibodies, Viral , Viral Envelope Proteins/genetics , Mice, Inbred C57BL , Adjuvants, Immunologic , Adjuvants, Pharmaceutic
6.
An. bras. dermatol ; 99(1): 72-79, Jan.-Feb. 2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1527691

ABSTRACT

Abstract Background: Methotrexate (MTX) is an alternative treatment for patients with moderate/severe atopic dermatitis (AD). Objective: The authors evaluated the effect of MTX on the cutaneous expression of cytokines and chemokines that are involved in the inflammatory response in adult AD patients who received treatment with methotrexate for 24 weeks. Methods: The authors conducted a prospective single-institution cohort study with 12 adults with moderate/severe AD who received oral MTX (15 mg/wk for 24 wks) and 10 non-atopic matched controls. The comparison was made of skin biopsies of lesional and non-lesional skin, pre- and post MTX treatment. The authors analyzed mean epidermal thickness and expression of IL-31, IL-31RA, OSMR, TSLP, Ki67, IL-4 mRNA, IL-6, IL-10, TNF-α, IFN-γ, TARC, and CCL-22. Results: There was a reduction in mean epidermal thickness (p = 0.021), an increase in IL-31RA expression (immunohistochemistry) in the epidermis (p = 0.016) and a decrease in IL-31 gene expression (p = 0.019) on lesional AD skin post-MTX treatment. No significant changes in the cutaneous expression of the other evaluated markers were identified. Study limitations: Small sample size and limited length of follow-up. Conclusions: Treatment with MTX in adults with moderate/severe AD reduced epidermal hyperplasia and changed the cutaneous expression of inflammatory cytokines and receptors that are mainly related to pruritus, including IL-31 and IL-31RA.

7.
An Bras Dermatol ; 99(1): 72-79, 2024.
Article in English | MEDLINE | ID: mdl-37730501

ABSTRACT

BACKGROUND: Methotrexate (MTX) is an alternative treatment for patients with moderate/severe atopic dermatitis (AD). OBJECTIVE: The authors evaluated the effect of MTX on the cutaneous expression of cytokines and chemokines that are involved in the inflammatory response in adult AD patients who received treatment with methotrexate for 24 weeks. METHODS: The authors conducted a prospective single-institution cohort study with 12 adults with moderate/severe AD who received oral MTX (15 mg/wk for 24 wks) and 10 non-atopic matched controls. The comparison was made of skin biopsies of lesional and non-lesional skin, pre- and post MTX treatment. The authors analyzed mean epidermal thickness and expression of IL-31, IL-31RA, OSMR, TSLP, Ki67, IL-4 mRNA, IL-6, IL-10, TNF-α, IFN-γ, TARC, and CCL-22. RESULTS: There was a reduction in mean epidermal thickness (p = 0.021), an increase in IL-31RA expression (immunohistochemistry) in the epidermis (p = 0.016) and a decrease in IL-31 gene expression (p = 0.019) on lesional AD skin post-MTX treatment. No significant changes in the cutaneous expression of the other evaluated markers were identified. STUDY LIMITATIONS: Small sample size and limited length of follow-up. CONCLUSIONS: Treatment with MTX in adults with moderate/severe AD reduced epidermal hyperplasia and changed the cutaneous expression of inflammatory cytokines and receptors that are mainly related to pruritus, including IL-31 and IL-31RA. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03327116.


Subject(s)
Dermatitis, Atopic , Adult , Humans , Dermatitis, Atopic/drug therapy , Methotrexate/therapeutic use , Cohort Studies , Prospective Studies , Cytokines
8.
Biomed Rep ; 19(6): 95, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37901873

ABSTRACT

Lower levels of peripheral mucosal-associated invariant T (MAIT) cells have been observed in the peripheral blood of patients with severe coronavirus disease 2019 (COVID-19). Following on from previous research into the effect of the IgG repertoire on human lymphocytes, the present study aimed to evaluate if immunoglobulin G (IgG) antibodies obtained from patients with mild or severe COVID-19 contribute to these effects on MAIT cells. Culture experiments were performed using healthy human peripheral blood mononuclear cells (PBMCs) and different repertoires of IgG obtained from patients with COVID-19 as a mild or severe disease and compared with mock, healthy control or therapeutic IgG conditions. The results indicate that the IgG repertoire induced during the development of mild and severe COVID-19 has, per se, the in vitro potential to reduce the frequency of MAIT cells and the production of IFN-γ by the MAIT cell population in PBMCs from healthy individuals. In conclusion, the results of the present study indicate that IgG in patients with severe COVID-19 may participate in the reduction of peripheral MAIT cell frequency and hinder the antiviral activity of these cells.

9.
Viruses ; 15(9)2023 08 29.
Article in English | MEDLINE | ID: mdl-37766239

ABSTRACT

Congenital Zika Syndrome (CZS) is associated with an increased risk of microcephaly in affected children. This study investigated the peripheral dysregulation of immune mediators in children with microcephaly due to CZS. Gene expression quantified by qPCR in whole blood samples showed an increase in IFNγ and IL-13 transcripts in children affected with microcephaly compared to the control group. The microcephaly group exhibited significantly decreased CCL2 and CXCL8 levels in serum, quantified by CBA assay. An allergic profile questionnaire revealed a high prevalence of allergies in the microcephaly group. In accordance, elevated serum IgE level measured by the Proquantum Immunoassay was observed in children affected with microcephaly compared to the control group. Altogether, these findings show a persistent systemic inflammation in children with microcephaly due to CZS and suggest a possible impairment in leukocyte migration caused by low production of CCL2 and CXCL8, in addition to high levels of IgE associated with high prevalence of allergies. The dysregulation of inflammatory genes and chemokines underscores the importance of understanding the immunological characteristics of CZS. Further investigation into the long-term consequences of systemic inflammation in these children is crucial for developing appropriate therapeutic strategies and tailored vaccination protocols.


Subject(s)
Hypersensitivity , Microcephaly , Zika Virus Infection , Zika Virus , Child , Humans , Chemokine CCL2 , Hypersensitivity/complications , Hypersensitivity/epidemiology , Immunoglobulin E , Inflammation , Microcephaly/epidemiology , Prevalence , Zika Virus Infection/complications , Zika Virus Infection/epidemiology
10.
Int J Mol Sci ; 24(5)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36902104

ABSTRACT

Sézary syndrome (SS) is a rare and aggressive type of cutaneous T-cell lymphoma, with an abnormal inflammatory response in affected skin. The cytokines IL-1B and IL-18, as key signaling molecules in the immune system, are produced in an inactive form and cleave to the active form by inflammasomes. In this study, we assessed the skin, serum, peripheral mononuclear blood cell (PBMC) and lymph-node samples of SS patients and control groups (healthy donors (HDs) and idiopathic erythroderma (IE) nodes) to investigate the inflammatory markers IL-1B and IL-18 at the protein and transcript expression levels, as potential markers of inflammasome activation. Our findings showed increased IL-1B and decreased IL-18 protein expression in the epidermis of SS patients; however, in the dermis layer, we detected increased IL-18 protein expression. In the lymph nodes of SS patients at advanced stages of the disease (N2/N3), we also detected an enhancement of IL-18 and a downregulation of IL-1B at the protein level. Moreover, the transcriptomic analysis of the SS and IE nodes confirmed the decreased expression of IL1B and NLRP3, whereas the pathway analysis indicated a further downregulation of IL1B-associated genes. Overall, the present findings showed compartmentalized expressions of IL-1B and IL-18 and provided the first evidence of their imbalance in patients with Sézary syndrome.


Subject(s)
Interleukin-18 , Sezary Syndrome , Skin Neoplasms , Humans , Dermatitis, Exfoliative/metabolism , Inflammasomes/metabolism , Interleukin-18/genetics , Interleukin-18/metabolism , Leukocytes, Mononuclear/metabolism , Sezary Syndrome/metabolism , Skin/metabolism , Skin Neoplasms/metabolism
11.
Viruses ; 15(2)2023 01 23.
Article in English | MEDLINE | ID: mdl-36851534

ABSTRACT

Obesity is increasing in incidence worldwide, especially in women, which can affect the outcome of pregnancy. During this period, viral infections represent a risk to the mother, the placental unit, and the fetus. The Zika virus (ZIKV) outbreak in Brazil has been the cause of congenital Zika syndrome (CZS), with devastating consequences such as microcephaly in newborns. Herein, we analyzed the impact of maternal overweight/obesity on the antiviral factors' expression in the placental tissue of Zika-infected mothers. We accessed placentas from women with and without obesity from 34 public health units (São Paulo) and from Zika-infected mothers with and without obesity from the Clinical Cohort Study of ZIKV pregnant women (Rio de Janeiro, Brazil). We first verified that obesity, without infection, did not alter the constitutive transcriptional expression of antiviral factors or IFN type I/III expression. Interestingly, obesity, when associated with ZIKV infection, showed a decreased transcriptional expression of RIG-I and IFIH1 (MDA-5 protein precursor gene). At the protein level, we also verified a decreased RIG-I and IRF-3 expression in the decidual placenta from the Zika-infected obese group, regardless of microcephaly. This finding shows, for the first time, that obesity associated with ZIKV infection leads to an impaired type I IFN downstream signaling pathway in the maternal-fetal interface.


Subject(s)
Interferon Type I , Microcephaly , Zika Virus Infection , Zika Virus , Infant, Newborn , Pregnancy , Female , Humans , Antiviral Agents , Pregnant Women , Zika Virus Infection/complications , Cohort Studies , Brazil/epidemiology , Placenta , Obesity
12.
Cells ; 11(21)2022 10 25.
Article in English | MEDLINE | ID: mdl-36359755

ABSTRACT

COVID-19, the infectious disease caused by SARS-CoV-2, has spread on a pandemic scale. The viral infection can evolve asymptomatically or can generate severe symptoms, influenced by the presence of comorbidities. Lymphopenia based on the severity of symptoms in patients affected with COVID-19 is frequent. However, the profiles of CD4+ and CD8+ T cells regarding cytotoxicity and antiviral factor expression have not yet been completely elucidated in acute SARS-CoV-2 infections. The purpose of this study was to evaluate the phenotypic and functional profile of T lymphocytes in patients with moderate and severe/critical COVID-19. During the pandemic period, we analyzed a cohort of 62 confirmed patients with SARS-CoV-2 (22 moderate cases and 40 severe/critical cases). Notwithstanding lymphopenia, we observed an increase in the expression of CD28, a co-stimulator molecule, and activation markers (CD38 and HLA-DR) in T lymphocytes as well as an increase in the frequency of CD4+ T cells, CD8+ T cells, and NK cells that express the immunological checkpoint protein PD-1 in patients with a severe/critical condition compared to healthy controls. Regarding the cytotoxic profile of peripheral blood mononuclear cells, an increase in the response of CD4+ T cells was already observed at the baseline level and scarcely changed upon PMA and Ionomycin stimulation. Meanwhile, CD8+ T lymphocytes decreased the cytotoxic response, evidencing a profile of exhaustion in patients with severe COVID-19. As observed by t-SNE, there were CD4+ T-cytotoxic and CD8+ T with low granzyme production, evidencing their dysfunction in severe/critical conditions. In addition, purified CD8+ T lymphocytes from patients with severe COVID-19 showed increased constitutive expression of differentially expressed genes associated with the caspase pathway, inflammasome, and antiviral factors, and, curiously, had reduced expression of TNF-α. The cytotoxic profile of CD4+ T cells may compensate for the dysfunction/exhaustion of TCD8+ in acute SARS-CoV-2 infection. These findings may provide an understanding of the interplay of cytotoxicity between CD4+ T cells and CD8+ T cells in the severity of acute COVID-19 infection.


Subject(s)
COVID-19 , Lymphopenia , Humans , SARS-CoV-2 , Leukocytes, Mononuclear , CD8-Positive T-Lymphocytes , Lymphopenia/metabolism , Antiviral Agents/metabolism
13.
Front Immunol ; 13: 1012027, 2022.
Article in English | MEDLINE | ID: mdl-36248842

ABSTRACT

Ectonucleotidases modulate inflammatory responses by balancing extracellular ATP and adenosine (ADO) and might be involved in COVID-19 immunopathogenesis. Here, we explored the contribution of extracellular nucleotide metabolism to COVID-19 severity in mild and severe cases of the disease. We verified that the gene expression of ectonucleotidases is reduced in the whole blood of patients with COVID-19 and is negatively correlated to levels of CRP, an inflammatory marker of disease severity. In line with these findings, COVID-19 patients present higher ATP levels in plasma and reduced levels of ADO when compared to healthy controls. Cell type-specific analysis revealed higher frequencies of CD39+ T cells in severely ill patients, while CD4+ and CD8+ expressing CD73 are reduced in this same group. The frequency of B cells CD39+CD73+ is also decreased during acute COVID-19. Interestingly, B cells from COVID-19 patients showed a reduced capacity to hydrolyze ATP into ADP and ADO. Furthermore, impaired expression of ADO receptors and a compromised activation of its signaling pathway is observed in COVID-19 patients. The presence of ADO in vitro, however, suppressed inflammatory responses triggered in patients' cells. In summary, our findings support the idea that alterations in the metabolism of extracellular purines contribute to immune dysregulation during COVID-19, possibly favoring disease severity, and suggest that ADO may be a therapeutic approach for the disease.


Subject(s)
COVID-19 , Adenosine/metabolism , Adenosine Diphosphate , Adenosine Triphosphate/metabolism , Humans , Purines , Severity of Illness Index , Signal Transduction
14.
Front Public Health ; 10: 963834, 2022.
Article in English | MEDLINE | ID: mdl-36045733

ABSTRACT

The literature presents several reports of the impact of glycemic control and diabetes in the inflammatory and coagulatory response during coronavirus disease 2019 (COVID-19). Nevertheless, the long-term impact of the COVID-19 in diabetic patients is still to be explored. Therefore, we recruited 128 patients and performed a longitudinal analysis on COVID-19-associated biomarkers of patients with COVID-19, tree and 6 months after COVID-19 recovery and put into perspective the possible long-term complication generated after COVID-19. In our investigation, we failed to verify any long-term modification on inflammatory biomarkers, but detected an increase in the glycemia and glycated hemoglobin in patients without any pre-existing history or diagnosis of diabetes (non-diabetic patients). Although diabetic and non-diabetic patients presented elevated levels of glycated hemoglobin, the c-peptide test indicated a normal beta cell function in all patients.


Subject(s)
COVID-19 , Diabetes Mellitus , Biomarkers , Blood Glucose/analysis , Glycated Hemoglobin/analysis , Humans
15.
Vaccines (Basel) ; 10(8)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-36016134

ABSTRACT

Neonates have a limited adaptive response of plasma cells, germinal center (GC) B cells, and T follicular helper cells (TFH). As neonatal vaccination can be an important tool for AIDS prevention, these limitations need to be overcome. Chimeric DNA vaccine encoding p55Gag HIV-1 protein conjugated with lysosomal-associated membrane protein 1 (LAMP-1) has been described as immunogenic in the neonate period. Herein, we investigated the immunologic mechanisms involved in neonatal immunization with a LAMP-1/p55Gag (LAMP/Gag) DNA vaccine in a C57BL/6 mouse background. Neonatal LAMP/Gag vaccination induced strong Gag-specific T-cell response until adulthood and elevated levels of anti-Gag IgG antibodies. We also demonstrated for the first time that the immunogenicity of the neonatal period with LAMP/Gag is due to the induction of high-affinity anti-p24 IgG antibodies and long-term plasma cells. Together with that, there is the generation of early TFH cells and the formation of GC sites with the upregulation of activation-induced cytidine deaminase (AID) enzyme mRNA and protein expression in draining lymph nodes after neonatal LAMP/Gag vaccination. These findings underscore that the LAMP-1 strategy in the chimeric vaccine could be useful to enhance antibody production even in the face of neonatal immaturity, and they contribute to the development of new vaccine approaches for other emerging pathogens at an early stage of life.

16.
J Immunol Res ; 2022: 9764002, 2022.
Article in English | MEDLINE | ID: mdl-35971391

ABSTRACT

COVID-19 has several mechanisms that can lead to lymphocyte depletion/exhaustion. The checkpoint inhibitor molecule programmed death protein 1 (PD-1) and its programmed death-ligand 1 (PDL-1) play an important role in inhibiting cellular activity as well as the depletion of these cells. In this study, we evaluated PD-1 expression in TCD4+, TCD8+, and CD19+ lymphocytes from SARS-CoV-2-infected patients. A decreased frequency of total lymphocytes and an increased PD-1 expression in TCD4+ and CD19+ lymphocytes were verified in severe/critical COVID-19 patients. In addition, we found a decreased frequency of total monocytes with an increased PD-1 expression on CD14+ monocytes in severe/critical patients in association with the time of infection. Moreover, we observed an increase in sPD-L1 circulant levels associated with the severity of the disease. Overall, these data indicate an important role of the PD-1/PDL-1 axis in COVID-19 and may provide a severity-associated biomarker and therapeutic target during SARS-CoV-2 infection.


Subject(s)
B7-H1 Antigen , COVID-19 , Programmed Cell Death 1 Receptor , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , COVID-19/diagnosis , COVID-19/pathology , Humans , Monocytes/metabolism , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , SARS-CoV-2 , Up-Regulation
17.
Med Microbiol Immunol ; 211(5-6): 219-235, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35857104

ABSTRACT

Microcephalic children due congenital Zika virus syndrome (CZS) present neurological symptoms already well described. However, several other alterations can also be observed. Here, we aimed to evaluate the immune system of microcephaly CZS children. We showed that these patients have enlarged thymus, spleen and cervical lymph nodes, analysed by ultrasound and compared to the reference values for healthy children. In the periphery, they have an increase in eosinophil count and morphological alterations as hypersegmented neutrophils and atypical lymphocytes, even in the absence of urinary tract infections, parasitological infections or other current symptomatic infections. Microcephalic children due CZS also have high levels of IFN-γ, IL-2, IL-4, IL-5 and type I IFNs, compared to healthy controls. In addition, this population showed a deficient cellular immune memory as demonstrated by the low reactivity to the tuberculin skin test even though they had been vaccinated with BCG less than 2 years before the challenge with the PPD. Together, our data demonstrate for the first time that CZS can cause alterations in primary and secondary lymphoid organs and also alters the morphology and functionality of the immune system cells, which broadens the spectrum of CZS symptoms. This knowledge may assist the development of specific therapeutic and more efficient vaccination schemes for this population of patients.


Subject(s)
Microcephaly , Pregnancy Complications, Infectious , Zika Virus Infection , Zika Virus , Child , Pregnancy , Female , Humans , Microcephaly/diagnosis , Microcephaly/etiology , Zika Virus Infection/complications , Zika Virus Infection/diagnosis , Brazil/epidemiology
18.
J Allergy Clin Immunol Pract ; 10(10): 2596-2604.e7, 2022 10.
Article in English | MEDLINE | ID: mdl-35654369

ABSTRACT

BACKGROUND: The effects of high-intensity interval training (HIIT) on dyspnea and aerobic fitness in adults with asthma are poorly understood. OBJECTIVE: To compare constant-load exercise (CLE) versus HIIT for improvements in dyspnea symptoms and clinical control in adults with moderate-to-severe asthma. METHODS: Participants were randomized into 2 groups: CLE (n = 27; started with 70% of maximal watts [Wmax] obtained during cardiopulmonary exercise testing [CPET]) and HIIT (n = 28; started with 80% and increased until 140% Wmax). Exercise training lasted 12 weeks (twice/week, 40 minutes/session on a cycle ergometer), and the intensity was based on CPET. Clinical asthma control (Asthma Control Questionnaire), aerobic fitness (the peak of oxygen uptake), health-related quality of life (Asthma Quality of Life Questionnaire), physical activity levels (PAL; accelerometer), symptoms of anxiety and depression (Hospital Anxiety and Depression Scale questionnaire), and dyspnea were evaluated before and after the intervention. Systemic and airway inflammation were also assessed. Two-way analysis of variance and χ2 tests were used for comparisons. Sixteen participants dropped out during the interventions and returned for the final evaluations. RESULTS: The CLE and HIIT groups showed similar improvements in aerobic fitness. The HIIT group had lower dyspnea and fatigue perception scores and higher PAL than the CLE group (P < .05) and clinical improvements in the psychosocial distress. In addition, only the HIIT group achieved a minimal clinically important difference in asthma symptoms. There was no change in the systemic and airway inflammation (P > .05). CONCLUSION: Both interventions promoted similar improvements in aerobic fitness; however, HIIT induced a greater reduction in dyspnea and fatigue perception. Similar responses were observed for other variables.


Subject(s)
Asthma , High-Intensity Interval Training , Adult , Asthma/therapy , Dyspnea/therapy , Exercise/physiology , Fatigue , Humans , Inflammation , Oxygen , Quality of Life
19.
Int J Mol Sci ; 23(2)2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35055124

ABSTRACT

Sézary syndrome is an aggressive leukemic variant of cutaneous T-cell lymphomas, characterized by erythroderma, lymphadenopathy, and peripheral blood involvement by CD4+ malignant T-cells. The pathogenesis of Sézary syndrome is not fully understood. However, the course of the disease is strongly influenced by the tumor microenvironment, which is altered by a combination of cytokines, chemokines, and growth factors. The crosstalk between malignant and reactive cells affects the immunologic response against tumor cells causing immune dysregulation. This review focuses on the interaction of malignant Sézary cells and the tumor microenvironment.


Subject(s)
Sezary Syndrome/pathology , Skin Neoplasms/pathology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Humans , Sezary Syndrome/immunology , Skin Neoplasms/immunology , Tumor Microenvironment
20.
World J Gastroenterol ; 27(44): 7734-7738, 2021 Nov 28.
Article in English | MEDLINE | ID: mdl-34908810

ABSTRACT

The recent manuscript reviewed investigations involving liver damage in coronavirus disease 2019 (COVID-19) patients, and COVID-19 in patients with previous chronic hepatological diseases, such as patients with liver graft. The literature presents several conflicting results concerning the anti-SARS-CoV-2 response in patients with solid organ transplants, in liver transplant recipients. Therefore, we would like to humbly state a few points for consideration involving liver transplant recipients and COVID-19, such as the time since transplantation, comorbidities, and immunosuppressive regimens.


Subject(s)
COVID-19 , Liver Transplantation , Organ Transplantation , Humans , Liver Transplantation/adverse effects , SARS-CoV-2 , Transplant Recipients
SELECTION OF CITATIONS
SEARCH DETAIL
...