Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 57(6-12): 877-82, 2008.
Article in English | MEDLINE | ID: mdl-18468645

ABSTRACT

The isolate, Pesudoalteromonas sp. TBT1, could grow to overcome the toxicity of tributyltin chloride (TBTCl) up to 30 microM in the absence of Cl(-) in the medium until the cells reached an exponential phase of growth. The viability, however, was reduced after the cells reached a stationary phase. The degradation products, such as dibutyltin (DBT) and monobutyltin (MBT), were not detected in the growth medium, indicating that the isolate has no ability to degrade TBT into less toxic DBT and MBT. Up to about 10(7.5) TBT molecules were adsorbed by a single cell. The observation of morphological changes with an electron microscope showed that the cell surface became wrinkled after exposure to the lethal concentration of 10 mM TBTCl. These results indicate that the resistance of the isolate toward the toxicity of TBTCl is not related to the unique cell surface, which seems to play an important role in preventing the diffusion of TBTCl into the cytoplasm.


Subject(s)
Drug Resistance, Bacterial , Pseudoalteromonas/metabolism , Trialkyltin Compounds/pharmacokinetics , Water Pollutants, Chemical/pharmacokinetics , Adsorption , Microscopy, Electron, Scanning , Pseudoalteromonas/drug effects , Pseudoalteromonas/growth & development , Trialkyltin Compounds/toxicity , Water Pollutants, Chemical/toxicity
2.
Int J Mol Sci ; 9(10): 1989-2002, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19325731

ABSTRACT

Tributyltin (TBT) released into seawater from ship hulls is a stable marine pollutant and obviously remains in marine environments. We isolated a TBT resistant marine Pseudoalteromonas sp. TBT1 from sediment of a ship's ballast water. The isolate (10(9.3 +/- 0.2) colony-forming units mL(-1)) adsorbed TBT in proportion to the concentrations of TBTCl externally added up to 3 mM, where the number of TBT adsorbed by a single cell was estimated to be 10(8.2). The value was reduced to about one-fifth when the lysozyme-treated cells were used. The surface of ethanol treated cells became rough, but the capacity of TBT adsorption was the same as that for native cells. These results indicate that the function of the cell surface, rather than that structure, plays an important role to the adsorption of TBT. The adsorption state of TBT seems to be multi-layer when the number of more than 10(6.8) TBT molecules is adsorbed by a single cell.

SELECTION OF CITATIONS
SEARCH DETAIL
...