Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Language
Publication year range
1.
Acta Cir Bras ; 39: e394224, 2024.
Article in English | MEDLINE | ID: mdl-39140525

ABSTRACT

PURPOSE: Amid rising health awareness, natural products which has milder effects than medical drugs are becoming popular. However, only few systems can quantitatively assess their impact on living organisms. Therefore, we developed a deep-learning system to automate the counting of cells in a gerbil model, aiming to assess a natural product's effectiveness against ischemia. METHODS: The image acquired from paraffin blocks containing gerbil brains was analyzed by a deep-learning model (fine-tuned Detectron2). RESULTS: The counting system achieved a 79%-positive predictive value and 85%-sensitivity when visual judgment by an expert was used as ground truth. CONCLUSIONS: Our system evaluated hydrogen water's potential against ischemia and found it potentially useful, which is consistent with expert assessment. Due to natural product's milder effects, large data sets are needed for evaluation, making manual measurement labor-intensive. Hence, our system offers a promising new approach for evaluating natural products.


Subject(s)
Brain Ischemia , Disease Models, Animal , Gerbillinae , Animals , Brain Ischemia/pathology , Deep Learning , Brain/pathology , Brain/blood supply , Image Processing, Computer-Assisted/methods
2.
Acta cir. bras ; Acta cir. bras;39: e394224, 2024. graf
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1568717

ABSTRACT

ABSTRACT Purpose: Amid rising health awareness, natural products which has milder effects than medical drugs are becoming popular. However, only few systems can quantitatively assess their impact on living organisms. Therefore, we developed a deep-learning system to automate the counting of cells in a gerbil model, aiming to assess a natural product's effectiveness against ischemia. Methods: The image acquired from paraffin blocks containing gerbil brains was analyzed by a deep-learning model (fine-tuned Detectron2). Results: The counting system achieved a 79%-positive predictive value and 85%-sensitivity when visual judgment by an expert was used as ground truth. Conclusions: Our system evaluated hydrogen water's potential against ischemia and found it potentially useful, which is consistent with expert assessment. Due to natural product's milder effects, large data sets are needed for evaluation, making manual measurement labor-intensive. Hence, our system offers a promising new approach for evaluating natural products.

SELECTION OF CITATIONS
SEARCH DETAIL