Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Genes Cells ; 29(7): 589-598, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38715219

ABSTRACT

Calcineurin (CN) is a conserved Ca2+/calmodulin-dependent phosphoprotein phosphatase that plays a key role in Ca2+ signaling. Regulator of calcineurin 1 (RCAN1), also known as Down syndrome critical region gene 1 (DSCR1), interacts with calcineurin and inhibits calcineurin-dependent signaling in various organisms. Ppb1, the fission yeast calcineurin regulates Cl--homeostasis, and Ppb1 deletion induces MgCl2 hypersensitivity. Here, we characterize the conserved and novel roles of the fission yeast RCAN1 homolog rcn1+. Consistent with its role as an endogenous calcineurin inhibitor, Rcn1 overproduction reproduced the calcineurin-null phenotypes, including MgCl2 hypersensitivity and inhibition of calcineurin signaling upon extracellular Ca2+ stimuli as evaluated by the nuclear translocation and transcriptional activation of the calcineurin substrate Prz1. Notably, overexpression of rcn1+ causes hypersensitivity to arsenite, whereas calcineurin deletion induces arsenite tolerance, showing a phenotypic discrepancy between Rcn1 overexpression and calcineurin deletion. Importantly, although Rcn1 deletion induces modest sensitivities to arsenite and MgCl2 in wild-type cells, the arsenite tolerance, but not MgCl2 sensitivity, associated with Ppb1 deletion was markedly suppressed by Rcn1 deletion. Collectively, our findings reveal a previously unrecognized functional collaboration between Rcn1 and calcineurin, wherein Rcn1 not only negatively regulates calcineurin in the Cl- homeostasis, but also Rcn1 mediates calcineurin signaling to modulate arsenite cytotoxicity.


Subject(s)
Arsenites , Calcineurin , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Calcineurin/metabolism , Calcineurin/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/genetics , Arsenites/toxicity , Arsenites/pharmacology , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Signal Transduction , DNA-Binding Proteins , Muscle Proteins
2.
MicroPubl Biol ; 20232023.
Article in English | MEDLINE | ID: mdl-37720683

ABSTRACT

The nucleocytoplasmic transport of proteins is an important mechanism to control cell fate. Pap1 is a fission yeast nucleocytoplasmic shuttling transcription factor of which localization is redox regulated. The nuclear export factor Crm1/exportin negatively regulates Pap1 by exporting it from the nucleus to the cytoplasm. Here, we describe the effect of an anti-cancer compound ACA-28, an improved derivative of 1'-acetoxychavicol acetate (ACA), on the subcellular distribution of Pap1. ACA-28 induced nuclear accumulation of Pap1 more strongly than did ACA. ROS inhibitor N-acetyl-L-cysteine (NAC) partly antagonized the Pap1 nuclear accumulation induced by ACA-28. NAC almost abolished Pap1 nuclear localization upon H 2 O 2 , whereas leptomycin B (LMB)-mediated inhibition of Pap1 nuclear export was resistant to NAC. Collectively, ACA-28-mediated apoptosis in cancer cells may involve ROS-dependent and -independent mechanisms.

3.
Microb Cell ; 10(6): 133-140, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37275474

ABSTRACT

Autophagy promotes or inhibits cell death depending on the environment and cell type. Our previous findings suggested that Atg1 is genetically involved in the regulation of Pmk1 MAPK in fission yeast. Here, we showed that Δatg1 displays lower levels of Pmk1 MAPK phosphorylation than did the wild-type (WT) cells upon treatment with a 1,3-ß-D-glucan synthase inhibitor micafungin or CaCl2, both of which activate Pmk1. Moreover, the overproduction of Atg1, but not that of the kinase inactivating Atg1D193A activates Pmk1 without any extracellular stimuli, suggesting that Atg1 may promote Pmk1 MAPK signaling activation. Notably, the overproduction of Atg1 induces a toxic effect on the growth of WT cells and the deletion of Pmk1 failed to suppress the cell death induced by Atg1, indicating that the Atg1-mediated cell death requires additional mechanism(s) other than Pmk1 activation. Moreover, atg1 gene deletion induces tolerance to micafungin and CaCl2, whereas pmk1 deletion induces severe sensitivities to these compounds. The Δatg1Δpmk1 double mutants display intermediate sensitivities to these compounds, showing that atg1 deletion partly suppressed growth inhibition induced by Δpmk1. Thus, Atg1 may act to promote cell death upon micafungin and CaCl2 stimuli regardless of Pmk1 MAPK activity. Since micafungin and CaCl2 are intracellular calcium inducers, our data reveal a novel role of the autophagy regulator Atg1 to induce cell death upon calcium overload independent of its role in Pmk1 MAPK activation.

4.
Genes Cells ; 28(6): 457-465, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36945130

ABSTRACT

The extracellular-signal-regulated-kinase (ERK) signaling pathway is essential for cell proliferation and is frequently deregulated in human tumors such as pancreatic cancers. ACAGT-007a (GT-7), an anti-cancer compound, stimulates ERK phosphorylation, thereby inducing growth inhibition and apoptosis in T3M4 pancreatic cancer cells. However, how GT-7 stimulates ERK phosphorylation and induces apoptosis in ERK-active T3M4 cells remains unclear. To look into the mechanism, we performed a spatiotemporal analysis of ERK phosphorylation mediated by GT-7 in T3M4 cells. The immunoblotting showed that GT-7 stimulates ERK phosphorylation within 1 h, which was more remarkable after 2 h. Importantly, apoptosis induction as evaluated by the cleaved Caspase-3 was observed only after 2-h incubation with GT-7. The immunofluorescence staining revealed the enrichment of phosphorylated ERK (phospho-ERK) in the nucleus upon 1-h incubation with GT-7. Fractionation experiments showed that GT-7 increases phospho-ERK levels in the cytoplasm within 1 h, whereas nuclear phospho-ERK accumulation is observed after 2-h incubation with GT-7. MEK inhibition by U0126 significantly diminishes nuclear phospho-ERK distribution and apoptosis induction stimulated by GT-7. Thus, GT-7 may initiate the induction of ERK phosphorylation in the cytoplasm, which leads to phospho-ERK enrichment in the nucleus. This nuclear phospho-ERK accumulation by GT-7 precedes and may underlie apoptosis induction in T3M4.


Subject(s)
Extracellular Signal-Regulated MAP Kinases , Pancreatic Neoplasms , Humans , Extracellular Signal-Regulated MAP Kinases/metabolism , Phosphorylation , Signal Transduction , Pancreatic Neoplasms/drug therapy , Apoptosis , MAP Kinase Signaling System , Pancreatic Neoplasms
5.
Biol Pharm Bull ; 46(2): 163-169, 2023.
Article in English | MEDLINE | ID: mdl-36724944

ABSTRACT

Phosphatidylinositol-4-phosphate 5-kinase (PI4P5K) is a highly conserved enzyme that generates phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) by phosphorylating phosphatidylinositol 4-phosphate (PI(4)P). Schizosaccharomyces pombe (S. pombe) its3-1 is a loss-of-function mutation in the essential its3+ gene that encodes a PI4P5K. Its3 regulates cell proliferation, cytokinesis, cell integrity, and membrane trafficking, but little is known about the regulatory mechanisms of Its3. To identify regulators of Its3, we performed a genetic screening utilizing the high-temperature sensitivity (TS) of its3-1 and identified puf3+ and puf4+, encoding Pumilio/PUF family RNA-binding proteins as multicopy suppressors of its3-1 cells. The deletions of the PUF domains in the puf3+ and puf4+ genes resulted in the reduced ability to suppress its3-1, suggesting that the suppression by Puf3 and Puf4 may involve their RNA-binding activities. The gene knockout of Puf4, but not that of Puf3, exacerbated the TS of its3-1. Interestingly, mutant Its3 expression levels both at mRNA and protein levels were lower than those of the wild-type (WT) Its3. Consistently, the overexpression of the mutant its3-1 gene suppressed the its3-1 phenotypes. Notably, Puf3 and Puf4 overexpression increased the mRNA and protein expression levels of both Its3 and Its3-1. Collectively, our genetic screening revealed a functional relationship between the Pumilio/PUF family RNA-binding proteins and PI4P5K.


Subject(s)
Schizosaccharomyces pombe Proteins , Schizosaccharomyces , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Schizosaccharomyces/enzymology , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism
6.
MicroPubl Biol ; 20222022.
Article in English | MEDLINE | ID: mdl-35996690

ABSTRACT

Apart from the highly conserved role in the cellular degradation process, autophagy also appears to play a key role in cellular proliferation. Here, we describe the genetic interaction of autophagy-related genes and Pmk1 MAPK signaling in fission yeast. atg1 deletion cells (Δ atg1 ) exhibit the vic (viable in the presence of immunosuppressant and Cl - ) phenotype, indicative of Pmk1 signaling inhibition. Moreover, the Δ atg1 Δ pmk1 double mutant resembles the single Δ pmk1 mutant, suggesting that Atg1 functions in the Pmk1 pathway. In addition, the growth defect induced by overexpression of Pck2, an upstream activator of Pmk1 MAPK was alleviated by the deletion of atg1 + . Finally, the deletion of autophagy-related genes recapitulates Pmk1 MAPK signaling inhibition. Our data suggest a novel role for autophagy in MAPK signaling regulation.

7.
Biocontrol Sci ; 27(1): 31-39, 2022.
Article in English | MEDLINE | ID: mdl-35314558

ABSTRACT

Calcineurin (CN) is a conserved Ca2+-calmodulin activated protein phosphatase, which plays important roles in immune regulation, cardiac hypertrophy, and apoptosis in humans. In pathogenic fungi, CN is essential for stress survival, sexual development, and virulence. The immunosuppressant tacrolimus (FK506) is a specific inhibitor of CN in humans and fungi including nonpathogenic fission yeast. Although calcineurin inhibition by FK506 or CN deletion in fission yeast does not induce growth defects, treatment with some anti-fungal drugs such as micafungin and valproic acid, induced synthetic lethality with calcineurin inhibition. Here, we searched for the compounds that induce synthetic growth defects with CN inhibition in fission yeast. We found that ellagic acid (EA) preferentially induced growth inhibition in CN deletion cells. Consistently, co-treatment with EA and FK506 induced severe growth inhibition in the wild-type cells, whereas neither of the single treatment with each compound did so. Moreover, deletion of the calcineurin-regulated transcription factor Prz1 also induced a marked EA sensitivity. Intriguingly, EA also enhanced the growth inhibitory effect of other anti-fungal drugs, including micafungin and miconazole. Thus, our data suggesting the synergistic growth inhibitory effect of the calcineurin inhibitor FK506 and EA may be useful to understand the mechanism to overcome the antifungal resistance.


Subject(s)
Ellagic Acid , Schizosaccharomyces , Tacrolimus , Calcineurin/metabolism , Calcineurin Inhibitors/pharmacology , Ellagic Acid/pharmacology , Humans , Schizosaccharomyces/drug effects , Tacrolimus/pharmacology
8.
Cells ; 11(4)2022 02 17.
Article in English | MEDLINE | ID: mdl-35203351

ABSTRACT

The mitogen-activated protein kinase (MAPK)/ERK and phosphatidylinositol-3 kinase (PI3K)/AKT pathways are dysregulated in various human cancers, including pancreatic ductal adenocarcinoma (PDAC), which has a very poor prognosis due to its lack of efficient therapies. We have previously identified ACAGT-007a (GT-7), an anti-cancer compound that kills ERK-active melanoma cells by inducing ERK-dependent apoptosis. Here, we investigated the apoptosis-inducing effect of GT-7 on three PDAC cell lines and its relevance with the MAPK/ERK and PI3K/AKT signaling pathways. GT-7 induced apoptosis in PDAC cells with different KRAS mutations (MIA-Pa-Ca-2 (KRAS G12C), T3M4 (KRAS Q61H), and PANC-1 (KRAS G12D)), being T3M4 most susceptible, followed by MIA-Pa-Ca-2, and PANC-1 was most resistant to apoptosis induction by GT-7. GT-7 stimulated ERK phosphorylation in the three PDAC cells, but only T3M4 displayed ERK-activation-dependent apoptosis. Furthermore, GT-7 induced a marked down-regulation of AKT phosphorylation after a transient peak in T3M4, whereas PANC-1 displayed the strongest and most sustained AKT activation, followed by MIA-Pa-Ca-2, suggesting that sustained AKT phosphorylation as a determinant for the resistance to GT-7-mediated apoptosis. Consistently, a PI3K inhibitor, Wortmannin, abolished AKT phosphorylation and enhanced GT-7-mediated apoptosis in T3M4 and MIA-Pa-Ca-2, but not in PANC-1, which showed residual AKT phosphorylation. This is the first report that ERK stimulation alone or in combination with AKT signaling inhibition can effectively induce apoptosis in PDAC and provides a rationale for a novel concurrent targeting of the PI3K/AKT and ERK pathways.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Apoptosis , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Cell Line, Tumor , Humans , Mitogen-Activated Protein Kinases/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Pancreatic Neoplasms
9.
Cells ; 10(10)2021 09 22.
Article in English | MEDLINE | ID: mdl-34685488

ABSTRACT

The RAF/MEK/ERK signaling pathway regulates diverse cellular processes as exemplified by cell proliferation, differentiation, motility, and survival. Activation of ERK1/2 generally promotes cell proliferation, and its deregulated activity is a hallmark of many cancers. Therefore, components and regulators of the ERK pathway are considered potential therapeutic targets for cancer, and inhibitors of this pathway, including some MEK and BRAF inhibitors, are already being used in the clinic. Notably, ERK1/2 kinases also have pro-apoptotic functions under certain conditions and enhanced ERK1/2 signaling can cause tumor cell death. Although the repertoire of the compounds which mediate ERK activation and apoptosis is expanding, and various anti-cancer compounds induce ERK activation while exerting their anti-proliferative effects, the mechanisms underlying ERK1/2-mediated cell death are still vague. Recent studies highlight the importance of dual-specificity phosphatases (DUSPs) in determining the pro- versus anti-apoptotic function of ERK in cancer. In this review, we will summarize the recent major findings in understanding the role of ERK in apoptosis, focusing on the major compounds mediating ERK-dependent apoptosis. Studies that further define the molecular targets of these compounds relevant to cell death will be essential to harnessing these compounds for developing effective cancer treatments.


Subject(s)
Apoptosis/drug effects , MAP Kinase Signaling System/drug effects , Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Apoptosis/physiology , Dual-Specificity Phosphatases/metabolism , Humans , Neoplasms/metabolism , Signal Transduction/drug effects
10.
J Pharmacol Exp Ther ; 379(1): 53-63, 2021 10.
Article in English | MEDLINE | ID: mdl-34312179

ABSTRACT

In receptor-type transcription factors-mediated cytochrome P450 (P450) induction, few studies have attempted to clarify the roles of protein kinase N (PKN) in the transcriptional regulation of P450s. This study aimed to examine the involvement of PKN in the transcriptional regulation of P450s by receptor-type transcription factors, including the aryl hydrocarbon receptor, constitutive androstane receptor (CAR), and pregnane X receptor. The mRNA and protein levels and metabolic activity of P450s in the livers of wild-type (WT) and double-mutant (D) mice harboring both PKN1 kinase-negative knock-in and PKN3 knockout mutations [PKN1 T778A/T778A; PKN3 -/-] were determined after treatment with activators for receptor-type transcription factors. mRNA and protein levels and metabolic activity of CYP2B10 were significantly higher in D mice treated with the CAR activator phenobarbital (PB) but not with 1,4-bis((3,5-dichloropyridin-2-yl)oxy)benzene compared with WT mice. We examined the CAR-dependent pathway regulated by PKN after PB treatment because the extent of CYP2B10 induction in WT and D mice was notably different in response to treatment with different CAR activators. The mRNA levels of Cyp2b10 in primary hepatocytes from WT and D mice treated with PB alone or in combination with Src kinase inhibitor 1 (SKI-1) or U0126 (a mitogen-activated protein kinase inhibitor) were evaluated. Treatment of hepatocytes from D mice with the combination of PB with U0126 but not SKI-1 significantly increased the mRNA levels of Cyp2b10 compared with those from the corresponding WT mice. These findings suggest that PKN may have inhibitory effects on the Src-receptor for activated C kinase 1 (RACK1) pathway in the CAR-mediated induction of Cyp2b10 in mice livers. SIGNIFICANCE STATEMENT: This is the first report of involvement of PKN in the transcriptional regulation of P450s. The elucidation of mechanisms responsible for induction of P450s could help optimize the pharmacotherapy and improve drug development. We examined whether the mRNA and protein levels and activities of P450s were altered in double-mutant mice harboring both PKN1 kinase-negative knock-in and PKN3 knockout mutations. PKN1/3 negatively regulates CAR-mediated induction of Cyp2b10 through phosphorylation of a signaling molecule in the Src-RACK1 pathway.


Subject(s)
Aryl Hydrocarbon Hydroxylases/metabolism , Constitutive Androstane Receptor/metabolism , Cytochrome P450 Family 2/metabolism , Liver/metabolism , Protein Kinase C/metabolism , Steroid Hydroxylases/metabolism , Transcription, Genetic/physiology , Animals , Aryl Hydrocarbon Hydroxylases/genetics , Cytochrome P450 Family 2/genetics , Enzyme Induction/drug effects , Enzyme Induction/physiology , Liver/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Steroid Hydroxylases/genetics , Transcription, Genetic/drug effects
11.
MicroPubl Biol ; 20212021 May 04.
Article in English | MEDLINE | ID: mdl-34036246

ABSTRACT

The molecular chaperone Hsp90 is highly conserved from bacteria to mammals. In fission yeast, Hsp90 is essential in many cellular processes and its expression is known to be increased by heat stress (HS). Here, we describe the distinct spatiotemporal distribution of Hsp90 under high-heat stress (HHS: 45˚C) and mild-heat stress (MHS: 37˚C). Hsp90 is largely distributed in the cytoplasm under non-stressed conditions (27˚C). Under HHS, Hsp90 forms several cytoplasmic granules within 5 minutes, then the granules disappear within 60 minutes. Under MHS, Hsp90 forms fewer granules than under HHS within 5 minutes and strikingly the granules persist and grow in size. In addition, nuclear enrichment of Hsp90 was observed after 60 minutes under both HS conditions. Our data suggest that assembly/disassembly of Hsp90 granules is differentially regulated by temperatures.

12.
J Cell Sci ; 134(2)2021 01 26.
Article in English | MEDLINE | ID: mdl-33277379

ABSTRACT

Protein kinase C (PKC) signaling is a highly conserved signaling module that plays a central role in a myriad of physiological processes, ranging from cell proliferation to cell death, via various signaling pathways, including MAPK signaling. Stress granules (SGs) are non-membranous cytoplasmic foci that aggregate in cells exposed to environmental stresses. Here, we explored the role of SGs in PKC/MAPK signaling activation in fission yeast. High-heat stress (HHS) induced Pmk1 MAPK activation and Pck2 translocation from the cell tips into poly(A)-binding protein (Pabp)-positive SGs. Pck2 dispersal from the cell tips required Pck2 kinase activity, and constitutively active Pck2 exhibited increased translocation to SGs. Importantly, Pmk1 deletion impaired Pck2 recruitment to SGs, indicating that MAPK activation stimulates Pck2 SG translocation. Consistently, HHS-induced SGs delayed Pck2 relocalization at the cell tips, thereby blocking subsequent Pmk1 reactivation after recovery from HHS. HHS partitioned Pck2 into the Pabp-positive SG-containing fraction, which resulted in reduced Pck2 abundance and kinase activity in the soluble fraction. Taken together, these results indicate that MAPK-dependent Pck2 SG recruitment serves as a feedback mechanism to intercept PKC/MAPK activation induced by HHS, which might underlie PKC-related diseases.


Subject(s)
Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Cytoplasmic Granules/metabolism , Feedback , MAP Kinase Signaling System , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Stress, Physiological
13.
Genes Cells ; 26(2): 109-116, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33249692

ABSTRACT

Dual-specificity phosphatase 6 (DUSP6) is a key negative feedback regulator of the member of the RAS-ERK MAPK signaling pathway that is associated with cellular proliferation and differentiation. Deterioration of DUSP6 expression could therefore result in deregulated growth activity. We have previously discovered ACA-28, a novel anticancer compound with a unique property to stimulate ERK phosphorylation and induce apoptosis in ERK-active melanoma cells. However, the mechanism of cancer cell-specific-apoptosis by ACA-28 remains obscure. Here, we investigated the involvement of DUSP6 in the mechanisms of the ACA-28-mediated apoptosis by using the NIH/3T3 cells overexpressing HER2/ErbB2 (A4-15 cells), as A4-15 exhibited higher ERK phosphorylation and are more susceptible to ACA-28 than NIH/3T3. We showed that A4-15 exhibited high DUSP6 protein levels, which require ERK activation. Notably, the silencing of the DUDSP6 gene by siRNA inhibited proliferation and induced apoptosis in A4-15, but not in NIH/3T3, indicating that A4-15 requires high DUSP6 expression for growth. Importantly, ACA-28 preferentially down-regulated the DUSP6 protein and proliferation in A4-15 via the proteasome, while it stimulated ERK phosphorylation. Collectively, the up-regulation of DUSP6 may exert a growth-promoting role in cancer cells overexpressing HER2. DUSP6 down-regulation in ERK-active cancer cells might have the potential as a novel cancer measure.


Subject(s)
Apoptosis/drug effects , Benzyl Alcohols/pharmacology , Down-Regulation/genetics , Dual Specificity Phosphatase 6/genetics , MAP Kinase Signaling System/drug effects , Receptor, ErbB-2/metabolism , Animals , Apoptosis/genetics , Cell Proliferation/drug effects , Down-Regulation/drug effects , Dual Specificity Phosphatase 6/metabolism , Mice , NIH 3T3 Cells , Oncogenes
14.
Bioorg Chem ; 103: 104137, 2020 10.
Article in English | MEDLINE | ID: mdl-32763519

ABSTRACT

The recent discovery that an ERK signaling modulator [ACA-28 (2a)] preferentially kills human melanoma cell lines by inducing ERK-dependent apoptosis has generated significant interest in the field of anti-cancer therapy. In the first SAR study on 2a, here, we successfully developed candidates (2b, 2c) both of which induce more potent and selective apoptosis towards ERK-active melanoma cells than 2a, thus revealing the structural basis for inducing the ERK-dependent apoptosis and proposing the therapeutic prospect of these candidates against ERK-dependent cancers represented by melanoma.


Subject(s)
Antineoplastic Agents/pharmacology , Benzhydryl Compounds/pharmacology , Carbonates/pharmacology , Drug Discovery , Esters/pharmacology , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Melanoma/drug therapy , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Benzhydryl Compounds/chemical synthesis , Benzhydryl Compounds/chemistry , Carbonates/chemical synthesis , Carbonates/chemistry , Dose-Response Relationship, Drug , Esters/chemical synthesis , Esters/chemistry , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , MAP Kinase Signaling System/drug effects , Melanoma/metabolism , Melanoma/pathology , Molecular Structure , Structure-Activity Relationship , Tumor Cells, Cultured
15.
Genes Cells ; 25(9): 637-645, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32682352

ABSTRACT

FTY720, a sphingosine-1-phosphate (S1P) analog, is used as an immune modulator to treat multiple sclerosis. Accumulating evidence has suggested the mode of action of FTY720 independent of an S1P modulator. In fission yeast, FTY720 induces an increase in intracellular Ca2+ and ROS levels. We have previously identified 49 genes of which deletion causes FTY720 sensitivity. Here, we characterized the FTY720-sensitive mutants in terms of their relevance to the Ca2+ homeostasis and identified the 16 FTY720- and Ca2+ -sensitive mutants (fcs mutants). Most of the FTY720-sensitive mutants showed elevated Ca2+ levels and exhibited Ca2+ dysregulation by FTY720 treatment. One of the functional categories among the genes whose deletion renders cells susceptible to FTY720 and Ca2+ include the Golgi/endosomal membrane trafficking. Notably, FTY720, but not phosphorylated FTY720 incapable of inducing Ca2+ increase, inhibited the secretion of acid phosphatase in the wild-type cells. Importantly, secretory defects of the Golgi/endosomal trafficking mutants, Vps45, or Ryh1 deletion, were further exacerbated by FTY720. Our fcs mutant screen also identified the adenylyl cyclase-associated protein Cap1 and a Rictor homolog Ste20, whose deletion markedly exacerbated FTY720-sensitive secretory impairment. Collectively, our data may suggest a synergistic impact of FTY720 combined with secretion perturbation on proliferation and Ca2+ homeostasis.


Subject(s)
Calcium/metabolism , Endosomes/drug effects , Fingolimod Hydrochloride/pharmacology , Golgi Apparatus/drug effects , Biological Transport , Endosomes/metabolism , Gene Deletion , Golgi Apparatus/metabolism , Schizosaccharomyces/drug effects , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism
16.
Yakugaku Zasshi ; 139(1): 7-12, 2019.
Article in Japanese | MEDLINE | ID: mdl-30606933

ABSTRACT

Mitogen-activated protein kinase (MAPK) is a highly conserved serine/threonine kinase that regulates multiple cellular processes such as cell proliferation, differentiation, apoptosis, and inflammation. Rnc1 has been identified as a regulator of Pmk1 MAPK signaling, a homologue of extracellular signal-regulated kinase (ERK)-1 MAPK in mammals. Rnc1 encodes a K-homology (KH)-type RNA-binding protein (RBP). Previously, it was reported that Rnc1 acts as a negative regulator of Pmk1 MAPK signaling through the mRNA stabilization of Pmp1, the MAPK phosphatase for Pmk1 in our laboratory. We analyzed the spatial regulation of Rnc1 and discovered that Rnc1 is exported from the nucleus by the mRNA-export system. The nuclear export of Rnc1 is important for exerting its function to stabilize Pmp1 mRNA. Therefore, the spatial regulation of Rnc1 affects MAPK signaling activity. We also reported that Nrd1, an RRM-type RBP, plays a critical role in cytokinesis by binding to and stabilizing myosin mRNA. Notably, Rnc1 and Nrd1 localize to stress granules (SGs) in response to various environmental stresses. Moreover, SG formation is inhibited in the Nrd1 or Rnc1 deletion cells, whereas the overproduction of Nrd1 or Rnc1, as well as that of mammalian RBP TIA-1, induces granule formation. These data show that Nrd1 and Rnc1 regulate SG formation as a novel SG component. Alterations of SG formation are linked to neurodegenerative diseases and resistance to anti-cancer drugs, thus conferring remarkable clinical importance to SGs. This review discusses the spatial regulation of RBPs or SG formation as novel targets for drug discovery.


Subject(s)
Drug Discovery , MAP Kinase Signaling System/physiology , Mitogen-Activated Protein Kinases/physiology , Molecular Targeted Therapy , RNA-Binding Proteins/metabolism , Animals , Cytoplasmic Granules/metabolism , Humans , Metalloendopeptidases , Schizosaccharomyces , Schizosaccharomyces pombe Proteins
17.
Genes Cells ; 23(9): 778-785, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30014536

ABSTRACT

We have previously identified the KH-type RNA-binding protein Rnc1 as an important regulator of the posttranscriptional expression of the MAPK phosphatase Pmp1 in fission yeast. Rnc1 localization in response to stress has not been elucidated thus far. Here, we report the dual roles of Rnc1 in assembly of stress granules (SGs), nonmembranous cytoplasmic foci composed of messenger ribonucleoproteins. Rnc1 can localize to poly(A)-binding protein (Pabp)-positive SGs upon various stress stimuli, including heat shock (HS) and arsenite treatment. Furthermore, Rnc1 deletion results in decreased SGs, indicating that Rnc1 is a new component and a regulator of SGs. Notably, Rnc1 translocates to the dot-like structures faster than Pabp, and this stress-induced Rnc1 translocation does not require its RNA-binding ability, as the Rnc1KH1,2,3GD mutant protein with impaired RNA-binding activity forms dots rather more efficiently than the wild-type Rnc1 upon HS. Interestingly, in the absence of stress, Rnc1 overproduction induced massive aggregation of Pabp-positive SGs and eIF2α phosphorylation. In clear contrast, overproduction of the Rnc1KH1,2,3GD mutant failed to induce Pabp aggregation and eIF2α phosphorylation, indicating that Rnc1 overproduction-induced SG assembly requires Rnc1 RNA-binding activity. Collectively, Rnc1 regulates SG assembly, dependently or independently of its RNA-binding activity.


Subject(s)
Cytoplasmic Granules/physiology , RNA, Fungal/metabolism , RNA-Binding Proteins/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/metabolism , Arsenites/pharmacology , Cell Nucleus/metabolism , Cytoplasm/metabolism , Mutation , Phosphorylation , Poly(A)-Binding Proteins/metabolism , Protein Domains , RNA-Binding Proteins/genetics , Schizosaccharomyces/drug effects , Schizosaccharomyces pombe Proteins/genetics
18.
Oxid Med Cell Longev ; 2018: 4397159, 2018.
Article in English | MEDLINE | ID: mdl-29785244

ABSTRACT

Fingolimod hydrochloride (FTY720) is a first-in-class of sphingosine-1-phosphate (S1P) receptor modulator approved to treat multiple sclerosis by its phosphorylated form (FTY720-P). Recently, a novel role of FTY720 as a potential anticancer drug has emerged. One of the anticancer mechanisms of FTY720 involves the induction of reactive oxygen species (ROS) and subsequent apoptosis, which is largely independent of its property as an S1P modulator. ROS have been considered as a double-edged sword in tumor initiation/progression. Intriguingly, prooxidant therapies have attracted much attention due to its efficacy in cancer treatment. These strategies include diverse chemotherapeutic agents and molecular targeted drugs such as sulfasalazine which inhibits the CD44v-xCT (cystine transporter) axis. In this review, we introduce our recent discoveries using a chemical genomics approach to uncover a signaling network relevant to FTY720-mediated ROS signaling and apoptosis, thereby proposing new potential targets for combination therapy as a means to enhance the antitumor efficacy of FTY720 as a ROS generator. We extend our knowledge by summarizing various measures targeting the vulnerability of cancer cells' defense mechanisms against oxidative stress. Future directions that may lead to the best use of FTY720 and ROS-targeted strategies as a promising cancer treatment are also discussed.


Subject(s)
Apoptosis/drug effects , Organophosphates/pharmacology , Reactive Oxygen Species/metabolism , Sphingosine/analogs & derivatives , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Humans , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/therapeutic use , Organophosphates/therapeutic use , Sphingosine/pharmacology , Sphingosine/therapeutic use
19.
Curr Genet ; 64(1): 103-108, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28799069

ABSTRACT

In eukaryotic cells, RNA binding proteins (RBPs) play critical roles in regulating almost every aspect of gene expression, often shuttling between the nucleus and the cytoplasm. They are also key determinants in cell fate via controlling the target mRNAs under the regulation of various signaling pathways in response to environmental stresses. Therefore, understanding the mechanisms that couple the location of mRNA and RBPs is a major challenge in the field of gene expression and signal responses. In fission yeast, a KH-type RBP Rnc1 negatively regulates MAPK signaling activation via mRNA stabilization of the dual-specificity MAPK phosphatase Pmp1, which dephosphorylates MAPK Pmk1. Rnc1 also serves as a target of MAPK phosphorylation, which makes a feedback loop mediated by an RBP. We recently discovered that the nuclear export of Rnc1 requires mRNA-binding ability and the mRNA export factor Rae1. This strongly suggested the presence of an mRNA-export system, which recognizes the mRNA/RBP complex and dictates the location and post-transcriptional regulation of mRNA cargo. Here, we briefly review the known mechanisms of general nuclear transporting systems, with an emphasis on our recent findings on the spatial regulation of Rnc1 and its impact on the regulation of the MAPK signal transduction cascade.


Subject(s)
Deoxyribonucleases/metabolism , Mitogen-Activated Protein Kinases/metabolism , Nucleocytoplasmic Transport Proteins/metabolism , RNA-Binding Proteins/metabolism , Signal Transduction , Active Transport, Cell Nucleus , Eukaryotic Cells/metabolism , RNA Stability , RNA Transport , RNA, Messenger/genetics , RNA, Messenger/metabolism
20.
Microb Cell ; 4(12): 390-401, 2017 Nov 27.
Article in English | MEDLINE | ID: mdl-29234668

ABSTRACT

Fingolimod hydrochloride (FTY720), a sphingosine-1-phosphate (S1P) analogue, is an approved immune modulator for the treatment of multiple sclerosis (MS). Notably, in addition to its well-known mode of action as an S1P modulator, accumulating evidence suggests that FTY720 induces apoptosis in various cancer cells via reactive oxygen species (ROS) generation. Although the involvement of multiple signaling molecules, such as JNK (Jun N-terminal kinase), Akt (alpha serine/threonine-protein kinase) and Sphk has been reported, the exact mechanisms how FTY720 induces cell growth inhibition and the functional relationship between FTY720 and these signaling pathways remain elusive. Our previous reports using the fission yeast Schizosaccharomyces pombe as a model system to elucidate FTY720-mediated signaling pathways revealed that FTY720 induces an increase in intracellular Ca2+ concentrations and ROS generation, which resulted in the activation of the transcriptional responses downstream of Ca2+/calcineurin signaling and stress-activated MAPK signaling, respectively. Here, we performed a genome-wide screening for genes whose deletion induces FTY720-sensitive growth in S. pombe and identified 49 genes. These gene products are related to the biological processes involved in metabolic processes, transport, transcription, translation, chromatin organization, cytoskeleton organization and intracellular signal transduction. Notably, most of the FTY720-sensitive deletion cells exhibited NAC-remedial FTY720 sensitivities and dysregulated ROS homeostasis. Our results revealed a novel gene network involving ROS homeostasis and the possible mechanisms of the FTY720 toxicity.

SELECTION OF CITATIONS
SEARCH DETAIL
...