Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 217
Filter
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167345, 2024 10.
Article in English | MEDLINE | ID: mdl-38992847

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) is a significant public health concern worldwide. Immunomodulatory targets in the HNSCC tumor microenvironment are crucial to enhance the efficacy of HNSCC immunotherapy. Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine that has been linked to poor prognosis in many cancers, but the mechanistic role of MIF in HNSCC remains unclear. Using a murine orthotopic oral cancer model in Mif+/+ or Mif-/- mice, we determined the function of host derived MIF in HNSCC tumor development, metastasis as well as localized and systemic tumor immune responses. We observed that Mif-/- mice have decreased tumor growth and tumor burden compared to their wild-type counterparts. Flow cytometric analysis of immune populations within the primary tumor site revealed increased Th1 and cytotoxic T cell recruitment to the HNSCC tumor microenvironment. Within the tumors of Mif-/- mice, MIF deletion also enhanced the effector function of anti-tumoral effector CD8+ T cells as well as Th1 cells and decreased the accumulation of granulocytic myeloid derived suppressor cells (g-MDSCs) in the tumor microenvironment. Furthermore, MDSCs isolated from tumor bearing mice chemotactically respond to MIF in a dose dependent manner. Taken together, our results demonstrate a chemotactic and immunomodulatory role for host derived MIF in promoting HNSCC and suggest that MIF targeted immunomodulation is a promising approach for HNSCC treatment.


Subject(s)
Head and Neck Neoplasms , Intramolecular Oxidoreductases , Macrophage Migration-Inhibitory Factors , Squamous Cell Carcinoma of Head and Neck , Tumor Microenvironment , Macrophage Migration-Inhibitory Factors/genetics , Macrophage Migration-Inhibitory Factors/metabolism , Animals , Tumor Microenvironment/immunology , Mice , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/genetics , Intramolecular Oxidoreductases/genetics , Intramolecular Oxidoreductases/metabolism , Mice, Knockout , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/pathology , Humans , Cell Line, Tumor , Mice, Inbred C57BL , Immune Tolerance , Th1 Cells/immunology , Th1 Cells/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism
2.
bioRxiv ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38562805

ABSTRACT

Ibudilast, an inhibitor of macrophage migration inhibitory factor (MIF) and phosphodiesterase (PDE), has been recently shown to have neuroprotective effects in a variety of neurologic diseases. We utilize a chick excitotoxic retinal damage model to investigate ibudilast's potential to protect retinal neurons. Using single cell RNA-sequencing (scRNA-seq), we find that MIF, putative MIF receptors CD74 and CD44, and several PDEs are upregulated in different retinal cells during damage. Intravitreal ibudilast is well tolerated in the eye and causes no evidence of toxicity. Ibudilast effectively protects neurons in the inner nuclear layer from NMDA-induced cell death, restores retinal layer thickness on spectral domain optical coherence tomography, and preserves retinal neuron function, particularly for the ON bipolar cells, as assessed by electroretinography. PDE inhibition seems essential for ibudilast's neuroprotection, as AV1013, the analogue that lacks PDE inhibitor activity, is ineffective. scRNA-seq analysis reveals upregulation of multiple signaling pathways, including mTOR, in damaged Müller glia (MG) with ibudilast treatment compared to AV1013. Components of mTORC1 and mTORC2 are upregulated in both bipolar cells and MG with ibudilast. The mTOR inhibitor rapamycin blocked accumulation of pS6 but did not reduce TUNEL positive dying cells. Additionally, through ligand-receptor interaction analysis, crosstalk between bipolar cells and MG may be important for neuroprotection. We have identified several paracrine signaling pathways that are known to contribute to cell survival and neuroprotection and might play essential roles in ibudilast function. These findings highlight ibudilast's potential to protect inner retinal neurons during damage and show promise for future clinical translation.

3.
Pathogens ; 13(3)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38535551

ABSTRACT

There are rare individuals whose insatiable curiosity and boundless intellect propel them into multiple frontiers of science, leaving an indelible mark on the fields that they venture into [...].

4.
iScience ; 26(12): 108502, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38125023

ABSTRACT

Cutaneous leishmaniasis (CL) is characterized by extensive skin lesions, which are usually painless despite being associated with extensive inflammation. The molecular mechanisms responsible for this analgesia have not been identified. Through untargeted metabolomics, we found enriched anti-nociceptive metabolic pathways in L. mexicana-infected mice. Purines were elevated in infected macrophages and at the lesion site during chronic infection. These purines have anti-inflammatory and analgesic properties by acting through adenosine receptors, inhibiting TRPV1 channels, and promoting IL-10 production. We also found arachidonic acid (AA) metabolism enriched in the ear lesions compared to the non-infected controls. AA is a metabolite of anandamide (AEA) and 2-arachidonoylglycerol (2-AG). These endocannabinoids act on cannabinoid receptors 1 and 2 and TRPV1 channels to exert anti-inflammatory and analgesic effects. Our study provides evidence of metabolic pathways upregulated during L. mexicana infection that may mediate anti-nociceptive effects experienced by CL patients and identifies macrophages as a source of these metabolites.

5.
Nat Commun ; 14(1): 7028, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37919280

ABSTRACT

The leishmanin skin test was used for almost a century to detect exposure and immunity to Leishmania, the causative agent of leishmaniasis, a major neglected tropical disease. Due to a lack of antigen used for the intradermal injection, the leishmanin skin test is no longer available. As leishmaniasis control programs are advancing and new vaccines are entering clinical trials, it is essential to re-introduce the leishmanin skin test. Here we establish a Leishmania donovani strain and describe the production, under Good Laboratory Practice conditions, of leishmanin soluble antigen used to induce the leishmanin skin test in animal models of infection and vaccination. Using a mouse model of cutaneous leishmaniasis and a hamster model of visceral leishmaniasis, soluble antigen induces a leishmanin skin test response following infection and vaccination with live attenuated Leishmania major (LmCen-/-). Both the CD4+ and CD8+ T-cells are necessary for the leishmanin skin test response. This study demonstrates the feasibility of large-scale production of leishmanin antigen addressing a major bottleneck for performing the leishmanin skin test in future surveillance and vaccine clinical trials.


Subject(s)
Leishmania donovani , Leishmaniasis, Cutaneous , Animals , CD8-Positive T-Lymphocytes , Antigens, Protozoan , Leishmaniasis, Cutaneous/prevention & control , Skin Tests
6.
Cell Rep ; 42(9): 113097, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37682713

ABSTRACT

Although phagocytic cells are documented targets of Leishmania parasites, it is unclear whether other cell types can be infected. Here, we use unbiased single-cell RNA sequencing (scRNA-seq) to simultaneously analyze host cell and Leishmania donovani transcriptomes to identify and annotate parasitized cells in spleen and bone marrow in chronically infected mice. Our dual-scRNA-seq methodology allows the detection of heterogeneous parasitized populations. In the spleen, monocytes and macrophages are the dominant parasitized cells, while megakaryocytes, basophils, and natural killer (NK) cells are found to be unexpectedly infected. In the bone marrow, the hematopoietic stem cells (HSCs) expressing phagocytic receptors FcγR and CD93 are the main parasitized cells. Additionally, we also detect parasitized cycling basal cells, eosinophils, and macrophages in chronically infected mice. Flow cytometric analysis confirms the presence of parasitized HSCs. Our unbiased dual-scRNA-seq method identifies rare, parasitized cells, potentially implicated in pathogenesis, persistence, and protective immunity, using a non-targeted approach.

7.
iScience ; 26(9): 107594, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37744404

ABSTRACT

Leishmaniasis is a tropical disease prevalent in 90 countries. Presently, there is no approved vaccine for human use. We developed a live attenuated L. mexicana Cen-/-(LmexCen-/-) strain as a vaccine candidate that showed excellent efficacy, characterized by reduced Th2 and enhanced Th1 responses in C57BL/6 and BALB/c mice, respectively, compared to wild-type L. mexicana (LmexWT) infection. Toward understanding the immune mechanisms of protection, we applied untargeted mass spectrometric analysis to LmexCen-/- and LmexWT infections. Data showed enrichment of the pentose phosphate pathway (PPP) in ears immunized with LmexCen-/-versus naive and LmexWT infection. PPP promotes M1 polarization in macrophages, suggesting a switch to a pro-inflammatory phenotype following LmexCen-/- inoculation. Accordingly, PPP inhibition in macrophages infected with LmexCen-/- reduced the production of nitric oxide and interleukin (IL)-1ß, hallmarks of classical activation. Overall, our study revealed the immune regulatory mechanisms that may be critical for the induction of protective immunity.

8.
iScience ; 26(9): 107593, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37744403

ABSTRACT

Leishmaniasis is a parasitic disease that is prevalent in 90 countries, and yet no licensed human vaccine exists against it. Toward control of leishmaniasis, we have developed Leishmania major centrin gene deletion mutant strains (LmCen-/-) as a live attenuated vaccine, which induces a strong IFN-γ-mediated protection to the host. However, the immune mechanisms of such protection remain to be understood. Metabolomic reprogramming of the host cells following Leishmania infection has been shown to play a critical role in pathogenicity and shaping the immune response following infection. Here, we applied untargeted mass spectrometric analysis to study the metabolic changes induced by infection with LmCen-/- and compared those with virulent L. major parasite infection to identify the immune mechanism of protection. Our data show that immunization with LmCen-/- parasites, in contrast to virulent L. major infection promotes a pro-inflammatory response by utilizing tryptophan to produce melatonin and downregulate anti-inflammatory kynurenine-AhR and FICZ-AhR signaling.

9.
Res Rep Trop Med ; 14: 61-85, 2023.
Article in English | MEDLINE | ID: mdl-37492219

ABSTRACT

Leishmaniasis is a neglected tropical disease endemic primarily to low- and middle-income countries, for which there has been inadequate development of affordable, safe, and efficacious therapies. Clinical manifestations of leishmaniasis range from self-healing skin lesions to lethal visceral infection with chances of relapse. Although treatments are available, secondary effects limit their use outside the clinic and negatively impact the quality of life of patients in endemic areas. Other non-medicinal treatments, such as thermotherapies, are limited to use in patients with cutaneous leishmaniasis but not with visceral infection. Recent studies shed light to mechanisms through which Leishmania can persist by hiding in cellular safe havens, even after chemotherapies. This review focuses on exploring the cellular niches that Leishmania parasites may be leveraging to persist within the host. Also, the cellular, metabolic, and molecular implications of Leishmania infection and how those could be targeted for therapeutic purposes are discussed. Other therapies, such as those developed against cancer or for manipulation of the ferroptosis pathway, are proposed as possible treatments against leishmaniasis due to their mechanisms of action. In particular, treatments that target hematopoietic stem cells and monocytes, which have recently been found to be necessary components to sustain the infection and provide a safe niche for the parasites are discussed in this review as potential field-deployable treatments against leishmaniasis.

10.
Parasite Immunol ; 45(7): e12984, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37183939

ABSTRACT

Leishmaniasis is considered as one of the 20 neglected tropical diseases. Current methods of leishmanial diagnosis depend on conventional laboratory-based techniques, which are time-consuming, costly and require special equipment and trained personnel. In this context, we aimed to provide an immuno field effect transistors (ImmunoFET) biosensor that matches the conventional standards for point-of-care (POC) monitoring and detection of Leishmania (L.) donovani/Leishmania major. Crude antigens prepared by repeated freeze thawing of L. donovani/L. major stationary phase promastigotes were used for ELISA and ImmunoFETs. Lesishmania-specific antigens were serially diluted in 1× PBS from a concentration of 106 -102 parasites/mL. A specific polyclonal antibody-based sandwich ELISA was established for the detection of Leishmania antigens. An immunoFET technology-based POC novel assay was constructed for the detection of Leishmania antigens. Interactions between antigen-antibody at the gate surface generate an electrical signal that can be measured by semiconductor field-effect principles. Sensitivity was considered and measured as the change in current divided by the initial current. The final L. donovani/L. major crude antigen protein concentrations were measured as 1.50 mg/mL. Sandwich ELISA against the Leishmania 40S ribosomal protein detected Leishmania antigens could detect as few as 100 L. donovani/L. major parasites. An immunoFET biosensor was constructed based on the optimization of aluminium gallium nitride/gallium nitride (AlGaN/GaN) surface oxidation methods. The device surface was composed by an AlGaN/GaN wafer with a 23 nm AlGaN barrier layer, a 2 µm GaN layer on the silicon carbide (SiC) substrate for Leishmania binding, and coated with a specific antibody against the Leishmania 40S ribosomal protein, which was successfully detected at concentrations from 106 to 102 parasites/mL in 1× PBS. At the concentration of 104 parasites, the immunoFETs device sensitivities were 13% and 0.052% in the sub-threshold regime and the saturation regime, respectively. Leishmania parasites were successfully detected by the ImmunoFET biosensor at a diluted concentration as low as 150 ng/mL. In this study, the developed ImmunoFET biosensor performed well. ImmunoFET biosensors can be used as an alternative diagnostic method to ELISA. Increasing the sensitivity and optimization of immuno-FET biosensors might allow earlier and faster detection of leishmaniasis.


Subject(s)
Leishmania donovani , Leishmania major , Leishmaniasis , Humans , Point-of-Care Systems , Leishmaniasis/parasitology , Ribosomal Proteins , Antibodies, Protozoan , Neglected Diseases
SELECTION OF CITATIONS
SEARCH DETAIL