Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38798338

ABSTRACT

Multiple Myeloma (MM) remains incurable despite advances in treatment options. Although tumor subtypes and specific DNA abnormalities are linked to worse prognosis, the impact of immune dysfunction on disease emergence and/or treatment sensitivity remains unclear. We established a harmonized consortium to generate an Immune Atlas of MM aimed at informing disease etiology, risk stratification, and potential therapeutic strategies. We generated a transcriptome profile of 1,149,344 single cells from the bone marrow of 263 newly diagnosed patients enrolled in the CoMMpass study and characterized immune and hematopoietic cell populations. Associating cell abundances and gene expression with disease progression revealed the presence of a proinflammatory immune senescence-associated secretory phenotype in rapidly progressing patients. Furthermore, signaling analyses suggested active intercellular communication involving APRIL-BCMA, potentially promoting tumor growth and survival. Finally, we demonstrate that integrating immune cell levels with genetic information can significantly improve patient stratification.

2.
Neuro Oncol ; 26(2): 348-361, 2024 02 02.
Article in English | MEDLINE | ID: mdl-37715730

ABSTRACT

BACKGROUND: Recurrent brain tumors are the leading cause of cancer death in children. Indoleamine 2,3-dioxygenase (IDO) is a targetable metabolic checkpoint that, in preclinical models, inhibits anti-tumor immunity following chemotherapy. METHODS: We conducted a phase I trial (NCT02502708) of the oral IDO-pathway inhibitor indoximod in children with recurrent brain tumors or newly diagnosed diffuse intrinsic pontine glioma (DIPG). Separate dose-finding arms were performed for indoximod in combination with oral temozolomide (200 mg/m2/day x 5 days in 28-day cycles), or with palliative conformal radiation. Blood samples were collected at baseline and monthly for single-cell RNA-sequencing with paired single-cell T cell receptor sequencing. RESULTS: Eighty-one patients were treated with indoximod-based combination therapy. Median follow-up was 52 months (range 39-77 months). Maximum tolerated dose was not reached, and the pediatric dose of indoximod was determined as 19.2 mg/kg/dose, twice daily. Median overall survival was 13.3 months (n = 68, range 0.2-62.7) for all patients with recurrent disease and 14.4 months (n = 13, range 4.7-29.7) for DIPG. The subset of n = 26 patients who showed evidence of objective response (even a partial or mixed response) had over 3-fold longer median OS (25.2 months, range 5.4-61.9, p = 0.006) compared to n = 37 nonresponders (7.3 months, range 0.2-62.7). Four patients remain free of active disease longer than 36 months. Single-cell sequencing confirmed emergence of new circulating CD8 T cell clonotypes with late effector phenotype. CONCLUSIONS: Indoximod was well tolerated and could be safely combined with chemotherapy and radiation. Encouraging preliminary evidence of efficacy supports advancing to Phase II/III trials for pediatric brain tumors.


Subject(s)
Brain Neoplasms , Brain Stem Neoplasms , Humans , Child , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Temozolomide , Tryptophan , Immunologic Factors , Immunotherapy , Brain Stem Neoplasms/pathology
3.
Front Immunol ; 14: 1271800, 2023.
Article in English | MEDLINE | ID: mdl-38090590

ABSTRACT

Introduction: Current multistep methods utilized for preparing and cryopreserving single-cell suspensions from blood samples for single-cell RNA sequencing (scRNA-seq) are time-consuming, requiring trained personnel and special equipment, so limiting their clinical adoption. We developed a method, Simple prEservatioN of Single cElls (SENSE), for single-step cryopreservation of whole blood (WB) along with granulocyte depletion during single-cell assay, to generate high quality single-cell profiles (SCP). Methods: WB was cryopreserved using the SENSE method and peripheral blood mononuclear cells (PBMCs) were isolated and cryopreserved using the traditional density-gradient method (PBMC method) from the same blood sample (n=6). The SCPs obtained from both methods were processed using a similar pipeline and quality control parameters. Further, entropy calculation, differential gene expression, and cellular communication analysis were performed to compare cell types and subtypes from both methods. Results: Highly viable (86.3 ± 1.51%) single-cell suspensions (22,353 cells) were obtained from the six WB samples cryopreserved using the SENSE method. In-depth characterization of the scRNA-seq datasets from the samples processed with the SENSE method yielded high-quality profiles of lymphoid and myeloid cell types which were in concordance with the profiles obtained with classical multistep PBMC method processed samples. Additionally, the SENSE method cryopreserved samples exhibited significantly higher T-cell enrichment, enabling deeper characterization of T-cell subtypes. Overall, the SENSE and PBMC methods processed samples exhibited transcriptional, and cellular communication network level similarities across cell types with no batch effect except in myeloid lineage cells. Discussion: Comparative analysis of scRNA-seq datasets obtained with the two cryopreservation methods i.e., SENSE and PBMC methods, yielded similar cellular and molecular profiles, confirming the suitability of the former method's incorporation in clinics/labs for cryopreserving and obtaining high-quality single-cells for conducting critical translational research.


Subject(s)
Cryopreservation , Leukocytes, Mononuclear , Cryopreservation/methods , Quality Control
4.
iScience ; 25(9): 104862, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36034221

ABSTRACT

Increasing antibiotic resistance among ocular pathogens often results in treatment failure for blinding infections such as endophthalmitis. Hence, newer therapeutics is needed to combat multidrug-resistant infections. Here, we show a drug repurposing approach using a connectivity map based on temporal transcriptomics of Staphylococcus aureus (SA) infected mouse retina. The analysis predicted three non-antibiotic drugs, Dequalinium chloride (DC), Clofilium tosylate (CT), and Glybenclamide (Glb) which reversed the SA infection signatures. Predicted drugs exhibited anti-inflammatory properties in human retinal cells against sensitive and resistant strains of SA. Intravitreal administration of all drugs reduced intraocular inflammation in SA-infected mouse eyes while DC and CT also reduced bacterial burden. Drug treatment improved visual function coinciding with reduced Caspase-3 mediated retinal cell death. Importantly, all drugs exhibited synergy with vancomycin in improving disease outcomes. Overall, our study identified three non-antibiotic drugs and demonstrated their therapeutic and prophylactic efficacies in ameliorating intraocular bacterial infection.

5.
Sci Rep ; 12(1): 3069, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35197510

ABSTRACT

The genomics data-driven identification of gene signatures and pathways has been routinely explored for predicting cancer survival and making decisions related to targeted treatments. A large number of packages and tools have been developed to correlate gene expression/mutations to the clinical outcome but lack the ability to perform such analysis based on pathways, gene sets, and gene ratios. Furthermore, in this single-cell omics era, the cluster markers from cancer single-cell transcriptomics studies remain an underutilized prognostic option. Additionally, no bioinformatics online tool evaluates the associations between the enrichment of canonical cell types and survival across cancers. Here we have developed Survival Genie, a web tool to perform survival analysis on single-cell RNA-seq (scRNA-seq) data and a variety of other molecular inputs such as gene sets, genes ratio, tumor-infiltrating immune cells proportion, gene expression profile scores, and tumor mutation burden. For a comprehensive analysis, Survival Genie contains 53 datasets of 27 distinct malignancies from 11 different cancer programs related to adult and pediatric cancers. Users can upload scRNA-seq data or gene sets and select a gene expression partitioning method (i.e., mean, median, quartile, cutp) to determine the effect of expression levels on survival outcomes. The tool provides comprehensive results including box plots of low and high-risk groups, Kaplan-Meier plots with univariate Cox proportional hazards model, and correlation of immune cell enrichment and molecular profile. The analytical options and comprehensive collection of cancer datasets make Survival Genie a unique resource to correlate gene sets, pathways, cellular enrichment, and single-cell signatures to clinical outcomes to assist in developing next-generation prognostic and therapeutic biomarkers. Survival Genie is open-source and available online at https://bbisr.shinyapps.winship.emory.edu/SurvivalGenie/ .


Subject(s)
Internet , Neoplasms/genetics , Neoplasms/mortality , Survival Analysis , Adult , Child , Datasets as Topic , Female , Humans , Male , Mutation , Neoplasms/immunology , Neoplasms/therapy , Prognosis , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Survival Rate , Transcriptome , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
6.
Int J Mol Sci ; 22(12)2021 Jun 09.
Article in English | MEDLINE | ID: mdl-34207555

ABSTRACT

Transplant glomerulopathy develops through multiple mechanisms, including donor-specific antibodies, T cells and innate immunity. This study investigates circulating small RNA profiles in serum samples of kidney transplant recipients with biopsy-proven transplant glomerulopathy. Among total small RNA population, miRNAs were the most abundant species in the serum of kidney transplant patients. In addition, fragments arising from mature tRNA and rRNA were detected. Most of the tRNA fragments were generated from 5' ends of mature tRNA and mainly from two parental tRNAs: tRNA-Gly and tRNA-Glu. Moreover, transplant patients with transplant glomerulopathy displayed a novel tRNA fragments signature. Gene expression analysis from allograft tissues demonstrated changes in canonical pathways related to immune activation such as iCos-iCosL signaling pathway in T helper cells, Th1 and Th2 activation pathway, and dendritic cell maturation. mRNA targets of down-regulated miRNAs such as miR-1224-5p, miR-4508, miR-320, miR-378a from serum were globally upregulated in tissue. Integration of serum miRNA profiles with tissue gene expression showed that changes in serum miRNAs support the role of T-cell mediated mechanisms in ongoing allograft injury.


Subject(s)
Cell-Free Nucleic Acids/blood , Graft Rejection/blood , Kidney Diseases/blood , Kidney Transplantation , MicroRNAs/blood , RNA, Transfer, Gly/blood , Adult , Aged , Female , Humans , Male , Middle Aged , Th1 Cells/metabolism , Th2 Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...