Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Chem Theory Comput ; 20(6): 2445-2461, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38450638

ABSTRACT

The effective fragment molecular orbital (EFMO) method has been developed to predict the total energy of a very large molecular system accurately (with respect to the underlying quantum mechanical method) and efficiently by taking advantage of the locality of strong chemical interactions and employing a two-level hierarchical parallelism. The accuracy of the EFMO method is partly attributed to the accurate and robust intermolecular interaction prediction between distant fragments, in particular, the many-body polarization and dispersion effects, which require the generation of static and dynamic polarizability tensors by solving the coupled perturbed Hartree-Fock (CPHF) and time-dependent HF (TDHF) equations, respectively. Solving the CPHF and TDHF equations is the main EFMO computational bottleneck due to the inefficient (serial) and I/O-intensive implementation of the CPHF and TDHF solvers. In this work, the efficiency and scalability of the EFMO method are significantly improved with a new CPU memory-based implementation for solving the CPHF and TDHF equations that are parallelized by either message passing interface (MPI) or hybrid MPI/OpenMP. The accuracy of the EFMO method is demonstrated for both covalently bonded systems and noncovalently bound molecular clusters by systematically examining the effects of basis sets and a key distance-related cutoff parameter, Rcut. Rcut determines whether a fragment pair (dimer) is treated by the chosen ab initio method or calculated using the effective fragment potential (EFP) method (separated dimers). Decreasing the value of Rcut increases the number of separated (EFP) dimers, thereby decreasing the computational effort. It is demonstrated that excellent accuracy (<1 kcal/mol error per fragment) can be achieved when using a sufficiently large basis set with diffuse functions coupled with a small Rcut value. With the new parallel implementation, the total EFMO wall time is substantially reduced, especially with a high number of MPI ranks. Given a sufficient workload, nearly ideal strong scaling is achieved for the CPHF and TDHF parts of the calculation. For the first time, EFMO calculations with the inclusion of long-range polarization and dispersion interactions on a hydrated mesoporous silica nanoparticle with explicit water solvent molecules (more than 15k atoms) are achieved on a massively parallel supercomputer using nearly 1000 physical nodes. In addition, EFMO calculations on the carbinolamine formation step of an amine-catalyzed aldol reaction at the nanoscale with explicit solvent effects are presented.

2.
J Chem Theory Comput ; 19(20): 7031-7055, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37793073

ABSTRACT

The primary focus of GAMESS over the last 5 years has been the development of new high-performance codes that are able to take effective and efficient advantage of the most advanced computer architectures, both CPU and accelerators. These efforts include employing density fitting and fragmentation methods to reduce the high scaling of well-correlated (e.g., coupled-cluster) methods as well as developing novel codes that can take optimal advantage of graphical processing units and other modern accelerators. Because accurate wave functions can be very complex, an important new functionality in GAMESS is the quasi-atomic orbital analysis, an unbiased approach to the understanding of covalent bonds embedded in the wave function. Best practices for the maintenance and distribution of GAMESS are also discussed.

3.
J Chem Phys ; 158(16)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37114705

ABSTRACT

Using an OpenMP Application Programming Interface, the resolution-of-the-identity second-order Møller-Plesset perturbation (RI-MP2) method has been off-loaded onto graphical processing units (GPUs), both as a standalone method in the GAMESS electronic structure program and as an electron correlation energy component in the effective fragment molecular orbital (EFMO) framework. First, a new scheme has been proposed to maximize data digestion on GPUs that subsequently linearizes data transfer from central processing units (CPUs) to GPUs. Second, the GAMESS Fortran code has been interfaced with GPU numerical libraries (e.g., NVIDIA cuBLAS and cuSOLVER) for efficient matrix operations (e.g., matrix multiplication, matrix decomposition, and matrix inversion). The standalone GPU RI-MP2 code shows an increasing speedup of up to 7.5× using one NVIDIA V100 GPU with one IBM 42-core P9 CPU for calculations on fullerenes of increasing size from 40 to 260 carbon atoms using the 6-31G(d)/cc-pVDZ-RI basis sets. A single Summit node with six V100s can compute the RI-MP2 correlation energy of a cluster of 175 water molecules using the correlation consistent basis sets cc-pVDZ/cc-pVDZ-RI containing 4375 atomic orbitals and 14 700 auxiliary basis functions in ∼0.85 h. In the EFMO framework, the GPU RI-MP2 component shows near linear scaling for a large number of V100s when computing the energy of an 1800-atom mesoporous silica nanoparticle in a bath of 4000 water molecules. The parallel efficiencies of the GPU RI-MP2 component with 2304 and 4608 V100s are 98.0% and 96.1%, respectively.

4.
J Chem Phys ; 154(10): 104122, 2021 Mar 14.
Article in English | MEDLINE | ID: mdl-33722015

ABSTRACT

A new method called QM-VM2 is presented that efficiently combines statistical mechanics with quantum mechanical (QM) energy potentials in order to calculate noncovalent binding free energies of host-guest systems. QM-VM2 efficiently couples the use of semi-empirical QM (SEQM) energies and geometry optimizations with an underlying molecular mechanics (MM) based conformational search, to find low SEQM energy minima, and allows for processing of these minima at higher levels of ab initio QM theory. A progressive geometry optimization scheme is introduced as a means to increase conformational sampling efficiency. The newly implemented QM-VM2 is used to compute the binding free energies of the host molecule cucurbit[7]uril and a set of 15 guest molecules. The results are presented along with comparisons to experimentally determined binding affinities. For the full set of 15 host-guest complexes, which have a range of formal charges from +1 to +3, SEQM-VM2 based binding free energies show poor correlation with experiment, whereas for the ten +1 complexes only, a significant correlation (R2 = 0.8) is achieved. SEQM-VM2 generation of conformers followed by single-point ab initio QM calculations at the dispersion corrected restricted Hartree-Fock-D3(BJ) and TPSS-D3(BJ) levels of theory, as post-processing corrections, yields a reasonable correlation with experiment for the full set of host-guest complexes (R2 = 0.6 and R2 = 0.7, respectively) and an excellent correlation for the +1 formal charge set (R2 = 1.0 and R2 = 0.9, respectively), as long as a sufficiently large basis set (triple-zeta quality) is employed. The importance of the inclusion of configurational entropy, even at the MM level, for the achievement of good correlation with experiment was demonstrated by comparing the calculated ΔE values with experiment and finding a considerably poorer correlation with experiment than for the calculated free energy ΔE - TΔS. For the complete set of host-guest systems with the range of formal charges, it was observed that the deviation of the predicted binding free energy from experiment correlates somewhat with the net charge of the systems. This observation leads to a simple empirical interpolation scheme to improve the linear regression of the full set.

6.
J Chem Theory Comput ; 16(7): 4521-4532, 2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32589421

ABSTRACT

An enhanced generalized analytic approach for determination of multidimensional Franck-Condon Factors (FCFs) enables efficient computational prediction of photoelectron spectra for large-dimensional systems. Incorporation of the automated assignment of Cartesian coordinate handedness and coordinate superposition between the ground and excited electronic states satisfies the Eckart conditions and allows evaluation of the Duschinsky effect. The model shows excellent agreement with experiments for the determination of FCFs and photoelectron spectra of a series of increasing dimensions polynuclear hydrocarbons (PAHs), including naphthalene, anthracene, phenanthrene, and pyrene. In addition, a high-resolution prediction of the PES for the 84-dimensional PAH corannulene provides motivation for an additional experimental study. For FCFs, coordinate transformation between the initial and final states rather than the dimension of the systems more greatly influences the complexity of the spectral band shapes.

7.
J Chem Phys ; 152(15): 154102, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32321259

ABSTRACT

A discussion of many of the recently implemented features of GAMESS (General Atomic and Molecular Electronic Structure System) and LibCChem (the C++ CPU/GPU library associated with GAMESS) is presented. These features include fragmentation methods such as the fragment molecular orbital, effective fragment potential and effective fragment molecular orbital methods, hybrid MPI/OpenMP approaches to Hartree-Fock, and resolution of the identity second order perturbation theory. Many new coupled cluster theory methods have been implemented in GAMESS, as have multiple levels of density functional/tight binding theory. The role of accelerators, especially graphical processing units, is discussed in the context of the new features of LibCChem, as it is the associated problem of power consumption as the power of computers increases dramatically. The process by which a complex program suite such as GAMESS is maintained and developed is considered. Future developments are briefly summarized.

8.
J Phys Chem A ; 123(39): 8460-8475, 2019 Oct 03.
Article in English | MEDLINE | ID: mdl-31365250

ABSTRACT

An interface between ab initio quantum mechanics (QM) methods and the general effective fragment potential (EFP2) method, QM-EFP2, is implemented in which the intermolecular interactions between a QM molecule and EFP fragments consist of Coulomb, polarization, exchange repulsion (exrep), and dispersion components. In order to ensure accuracy in the QM-EFP2 exrep interaction energy, the EFP2-EFP2 spherical Gaussian overlap (SGO) approximation is abandoned and replaced with the exact electron repulsion integrals (ERI) that are evaluated with a direct method to reduce disk usage. A Gaussian damping function for the QM-EFP2 Coulomb component damps both the EFP nuclear and electronic charges. A new overlap damping function has been implemented for the QM-EFP2 dispersion component. The current QM-EFP2 implementation has been benchmarked with the S22 and S66 data sets and demonstrates excellent agreement with symmetry-adapted perturbation theory (SAPT) for component energies and with coupled cluster theory [CCSD(T)] for the total interaction energies. Water clusters of various sizes (up to 256 water molecules) have been tested; it is shown that the QM-EFP2 method has an accuracy that is comparable to that of EFP2-EFP2. It has been shown previously that the accuracy of EFP2-EFP2 intermolecular interactions is comparable to that of second-order perturbation theory (MP2) or better. The implementation of the distributed data interface (DDI) parallelization scheme significantly improves the efficiency of QM-EFP2 calculations. The time to form the QM-EFP2 Fock operator per SCF iteration for water clusters scales linearly with the number EFP basis functions.

10.
J Chem Theory Comput ; 13(5): 2147-2158, 2017 May 09.
Article in English | MEDLINE | ID: mdl-28402636

ABSTRACT

The implementation, optimization, and performance of a generalized analytic treatment of multidimensional Franck-Condon Factors (FCF) within the harmonic oscillator approximation and associated photoelectron spectra (PES) for N-dimensional systems, including consideration of Eckart conditions in the displacement minimization and Cartesian coordinate handedness for evaluation of the Duschinsky Effect, is carried out in this work. A new efficient strategy for algorithmic efficiency for high dimensional systems is introduced, and demonstrated for 3-, 15-, and 30-dimensional systems. Determination of the photoelectron spectra for H2O+ (B̃2B2), vinyl alcohol, and C6H6+ (X̃2E1g) validates the capabilities with a high degree of accuracy with respect to experiment.

11.
Chem Commun (Camb) ; 53(1): 176-179, 2016 12 20.
Article in English | MEDLINE | ID: mdl-27910993

ABSTRACT

The preparation and full characterization of an iridium complex of the monocarba-closo-dodecaborate anion is reported. It was prepared by B-H bond activation using a tosyl amide directing group. Analysis by spectroscopic methods and X-ray crystallography revealed the presence a direct B-Ir interaction. The carborane acts as a B,N chelating ligand towards the Ir(Cp*)(solvent) fragment, resulting in a monomeric complex that is inert in solution and the solid state. Treatment with N-chlorosuccinimide resulted in selective monochlorination of the B-Ir position. In addition, its structure, spectroscopic features and reactivity were investigated by DFT calculations.

12.
J Am Chem Soc ; 138(49): 15889-15895, 2016 12 14.
Article in English | MEDLINE | ID: mdl-27809511

ABSTRACT

We provide herein a mechanistic analysis of aryl sulfoxide excited state processes, inspired by our recent report of aryl sulfoxide based fluorescent chemosensors. The use of aryl sulfoxides as reporting elements in chemosensor development is a significant deviation from previous approaches, and thus warrants closer examination. We demonstrate that metal ion binding suppresses nonradiative excited state decay by blocking formation of a previously unrecognized charge transfer excited state, leading to fluorescence enhancement. This charge transfer state derives from the initially formed locally excited state followed by intramolecular charge transfer to form a sulfoxide radical cation/aryl radical anion pair. With the aid of computational studies, we map out ground and excited state potential energy surface details for aryl sulfoxides, and conclude that fluorescence enhancement is almost entirely the result of excited state effects. This work expands previous proposals that excited state pyramidal inversion is the major nonradiative decay pathway for aryl sulfoxides. We show that pyramidal inversion is indeed relevant, but that an additional and dominant nonradiative pathway must also exist. These conclusions have implications for the design of next generation sulfoxide based fluorescent chemosensors.

SELECTION OF CITATIONS
SEARCH DETAIL
...