Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Influenza Other Respir Viruses ; 18(5): e13303, 2024 May.
Article in English | MEDLINE | ID: mdl-38757258

ABSTRACT

BACKGROUND: Data available for RSV and influenza infections among children < 2 years in Mongolia are limited. We present data from four districts of Ulaanbaatar from April 2015 to June 2021. METHODS: This study was nested in an enhanced surveillance project evaluating pneumococcal conjugate vaccine (PCV13) impact on the incidence of hospitalized lower respiratory tract infections (LRTIs). Our study was restricted to children aged < 2 years with arterial O2 saturation < 93% and children with radiological pneumonia. Nasopharyngeal (NP) swabs collected at admission were tested for RSV and influenza using qRT-PCR. NP swabs of all patients with radiological pneumonia and of a subset of randomly selected NP swabs were tested for S. pneumoniae (S.p.) by qPCR and for serotypes by culture and DNA microarray. RESULTS: Among 5705 patients, 2113 (37.0%) and 386 (6.8%) had RSV and influenza infections, respectively. Children aged 2-6 months had a higher percentage of very severe RSV infection compared to those older than 6 months (42.2% versus 31.4%, p-value Fisher's exact = 0.001). S.p. carriage was detected in 1073/2281 (47.0%) patients. Among S.p. carriage cases, 363/1073 (33.8%) had S.p. and RSV codetection, and 82/1073 (7.6%) had S.p. and influenza codetection. S.p. codetection with RSV/influenza was not associated with more severe LRTIs, compared to only RSV/influenza cases. CONCLUSION: In Mongolia, RSV is an important pathogen causing more severe LRTI in children under 6 months of age. Codetection of RSV or influenza virus and S.p. was not associated with increased severity.


Subject(s)
Influenza, Human , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Humans , Mongolia/epidemiology , Respiratory Syncytial Virus Infections/epidemiology , Infant , Influenza, Human/epidemiology , Influenza, Human/virology , Female , Male , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/isolation & purification , Child, Preschool , Nasopharynx/virology , Infant, Newborn , Incidence , Hospitalization/statistics & numerical data , Streptococcus pneumoniae/isolation & purification , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/classification , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology
2.
Emerg Infect Dis ; 30(3): 490-498, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38407131

ABSTRACT

Starting in June 2016, the 13-valent pneumococcal conjugate vaccine (PCV13) was introduced into the routine immunization program of Mongolia by using a 2+1 dosing schedule, phased by district. We used prospective hospital surveillance to evaluate the vaccine's effect on pneumonia incidence rates among children 2-59 months of age over a 6-year period. Of 17,607 children with pneumonia, overall adjusted incidence rate ratios showed decreased primary endpoint pneumonia, very severe pneumonia, and probable pneumococcal pneumonia until June 2021. Results excluding and including the COVID-19 pandemic period were similar. Pneumonia declined in 3 districts that introduced PCV13 with catch-up campaigns but not in the 1 district that did not. After PCV13 introduction, vaccine-type pneumococcal carriage prevalence decreased by 44% and nonvaccine-type carriage increased by 49%. After PCV13 introduction in Mongolia, the incidence of more specific pneumonia endpoints declined in children 2-59 months of age; additional benefits were conferred by catch-up campaigns.


Subject(s)
Pandemics , Pneumonia, Pneumococcal , Child , Humans , Vaccines, Conjugate , Incidence , Mongolia/epidemiology , Prospective Studies , Pneumonia, Pneumococcal/epidemiology , Pneumonia, Pneumococcal/prevention & control
3.
Vaccine ; 42(7): 1714-1722, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38350767

ABSTRACT

Pneumococcal Conjugate Vaccines (PCVs) have substantially reduced the burden of disease caused by Streptococcus pneumoniae (the pneumococcus). However, protection is limited to vaccine serotypes, and when administered to children who are colonized with pneumococci at the time of vaccination, immune responses to the vaccine are blunted. Here, we investigate the potential of a killed whole cell pneumococcal vaccine (WCV) to reduce existing pneumococcal carriage and mucosal disease when given therapeutically to infant mice colonized with pneumococci. We show that a single dose of WCV reduced pneumococcal carriage density in an antibody-dependent manner. Therapeutic vaccination induced robust immune responses to pneumococcal surface antigens CbpA, PspA (family 1) and PiaA. In a co-infection model of otitis media, a single dose of WCV reduced pneumococcal middle ear infection. Lastly, in a two-dose model, therapeutic administration of WCV reduced nasal shedding of pneumococci. Taken together, our data demonstrate that WCV administered in colonized mice reduced pneumococcal density in the nasopharynx and the middle ear, and decreased shedding. WCVs would be beneficial in low and middle-income settings where pneumococcal carriage in children is high.


Subject(s)
Otitis Media , Pneumococcal Infections , Infant , Child , Humans , Animals , Mice , Streptococcus pneumoniae , Pneumococcal Infections/prevention & control , Otitis Media/prevention & control , Pneumococcal Vaccines , Vaccination , Serogroup , Vaccines, Conjugate , Nasopharynx , Carrier State/prevention & control
4.
Microbiol Spectr ; 12(1): e0357923, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38059623

ABSTRACT

IMPORTANCE: Streptococcus pneumoniae (the pneumococcus) is a bacterial pathogen with the greatest burden of disease in Asia and Africa. The pneumococcal capsular polysaccharide has biological relevance as a major virulence factor as well as public health importance as it is the target for currently licensed vaccines. These vaccines have limited valency, covering up to 23 of the >100 known capsular types (serotypes) with higher valency vaccines in development. Here, we have characterized a new pneumococcal serotype, which we have named 33G. We detected serotype 33G in nasopharyngeal swabs (n = 20) from children and adults hospitalized with pneumonia, as well as healthy children in Mongolia. We show that the genetic, serological, and biochemical properties of 33G differ from existing serotypes, satisfying the criteria to be designated as a new serotype. Future studies should focus on the geographical distribution of 33G and any changes in prevalence following vaccine introduction.


Subject(s)
Pneumococcal Infections , Streptococcus pneumoniae , Child , Humans , Streptococcus pneumoniae/genetics , Pneumococcal Infections/microbiology , Serogroup , Pneumococcal Vaccines , Asia
7.
Lancet Infect Dis ; 23(8): 933-944, 2023 08.
Article in English | MEDLINE | ID: mdl-37062304

ABSTRACT

BACKGROUND: Interest in reduced-dose pneumococcal conjugate vaccine (PCV) schedules is growing, but data on their ability to provide direct and indirect protection are scarce. We evaluated 1 + 1 (at 2 months and 12 months) and 0 + 1 (at 12 months) schedules of PCV10 or PCV13 in a predominately unvaccinated population. METHODS: In this parallel, single-blind, randomised controlled trial, healthy infants aged 2 months were recruited from birth records in three districts in Ho Chi Minh City, Vietnam, and assigned (4:4:4:4:9) to one of five groups: PCV10 at 12 months of age (0 + 1 PCV10), PCV13 at 12 months of age (0 + 1 PCV13), PCV10 at 2 months and 12 months of age (1 + 1 PCV10), PCV13 at 2 months and 12 months of age (1 + 1 PCV13), and unvaccinated control. Outcome assessors were masked to group allocation, and the infants' caregivers and those administering vaccines were not. Nasopharyngeal swabs collected at 6 months, 12 months, 18 months, and 24 months were analysed for pneumococcal carriage. Blood samples collected from a subset of participants (200 per group) at various timepoints were analysed by ELISA and opsonophagocytic assay. The primary outcome was the efficacy of each schedule against vaccine-type carriage at 24 months, analysed by intention to treat for all those with a nasopharyngeal swab available. This trial is registered at ClinicalTrials.gov, NCT03098628. FINDINGS: 2501 infants were enrolled between March 8, 2017, and July 24, 2018 and randomly assigned to study groups (400 to 0 + 1 PCV10, 400 to 0 + 1 PCV13, 402 to 1 + 1 PCV10, 401 to 1 + 1 PCV13, and 898 to control). Analysis of the primary endpoint included 341 participants for 0 + 1 PCV10, 356 0 + 1 PCV13, 358 1 + 1 PCV10, 350 1 + 1 PCV13, and 758 control. At 24 months, a 1 + 1 PCV10 schedule reduced PCV10-type carriage by 58% (95% CI 25 to 77), a 1 + 1 PCV13 schedule reduced PCV13-type carriage by 65% (42 to 79), a 0 + 1 PCV10 schedule reduced PCV10-type carriage by 53% (17 to 73), and a 0 + 1 PCV13 schedule non-significantly reduced PCV13-type carriage by 25% (-7 to 48) compared with the unvaccinated control group. Reactogenicity and serious adverse events were similar across groups. INTERPRETATION: A 1 + 1 PCV schedule greatly reduces vaccine-type carriage and is likely to generate substantial herd protection and provide some degree of individual protection during the first year of life. Such a schedule is suitable for mature PCV programmes or for introduction in conjunction with a comprehensive catch-up campaign, and potentially could be most effective given as a mixed regimen (PCV10 then PCV13). A 0 + 1 PCV schedule has some effect on carriage along with a reasonable immune response and could be considered for use in humanitarian crises or remote settings. FUNDING: Bill & Melinda Gates Foundation. TRANSLATION: For the Vietnamese translation of the abstract see Supplementary Materials section.


Subject(s)
Pneumococcal Infections , Infant , Humans , Pneumococcal Infections/epidemiology , Vietnam , Single-Blind Method , Streptococcus pneumoniae , Pneumococcal Vaccines , Vaccines, Conjugate , Nasopharynx
8.
Vaccine ; 41(19): 3028-3037, 2023 05 05.
Article in English | MEDLINE | ID: mdl-37032228

ABSTRACT

BACKGROUND: High pneumococcal carriage density has been associated with severe pneumonia in some settings. The impact of pneumococcal conjugate vaccines (PCVs) on pneumococcal carriage density has been variable. The aim of this systematic literature review is to describe the effect of PCV7, PCV10 and PCV13 on pneumococcal colonisation density in children under five years old. METHODS: We included peer reviewed English literature published between 2000 and 2021 to identify relevant articles using Embase, Medline and PubMed. Original research articles of any study design in countries where PCV has been introduced/studied were included. Quality (risk) assessment was performed using tools developed by the National Heart Brain and Lung Institute for inclusion in this review. We used a narrative synthesis to present results. RESULTS: Ten studies were included from 1941 articles reviewed. There were two randomised controlled trials, two cluster randomised trials, one case control study, one retrospective cohort study and four cross sectional studies. Three studies used semiquantitative culture methods to determine density while the remaining studies used quantitative molecular techniques. Three studies reported an increase in density and three studies found a decrease in density among vaccinated compared with unvaccinated children. Four studies found no effect. There was considerable heterogeneity in the study populations, study design and laboratory methods. CONCLUSION: There was no consensus regarding the impact of PCV on pneumococcal nasopharyngeal density. We recommend the use of standardised methods to evaluate PCV impact on density.


Subject(s)
Carrier State , Pneumococcal Infections , Humans , Child , Infant , Child, Preschool , Vaccines, Conjugate/therapeutic use , Cross-Sectional Studies , Case-Control Studies , Retrospective Studies , Streptococcus pneumoniae , Pneumococcal Vaccines/therapeutic use , Nasopharynx , Pneumococcal Infections/prevention & control
9.
Lancet Reg Health West Pac ; 32: 100651, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36785850

ABSTRACT

Background: WHO recommends a three-dose infant pneumococcal conjugate vaccine (PCV) schedule administered as a two-dose primary series with booster (2 + 1) or a three-dose primary series (3 + 0). Data on carriage impacts of these and further reduced PCV schedules are needed to inform PCV strategies. Here we evaluate the efficacy against carriage of four different PCV10 schedules. Methods: Participants within an open-label, randomised controlled trial in Ho Chi Minh City, Vietnam, were allocated to receive PCV10 in a 3 + 1 (2,3,4,9 months, n = 152), 3 + 0 (2,3,4 months, n = 149), 2 + 1 (2,4,9.5 months, n = 250) or novel two-dose (2,6 months, n = 202) schedule, or no infant doses of PCV (two control groups, n = 197 and n = 199). Nasopharyngeal swabs collected between 2 and 24 months were analysed (blinded) for pneumococcal carriage and serotypes. Trial registration: ClinicalTrials.gov NCT01953510. Findings: Pneumococcal carriage prevalence was low (10.6-14.1% for vaccine-type (VT) at 12-24 months in unvaccinated controls). All four PCV10 schedules reduced VT carriage compared with controls (the 2 + 1 schedule at 12, 18, and 24 months; the 3 + 1 and two-dose schedules at 18 months; and the 3 + 0 schedule at 24 months), with maximum reductions of 40.1%-64.5%. There were no differences in VT carriage prevalence at 6 or 9 months comparing three-dose and two-dose primary series, and no differences at 12, 18, or 24 months when comparing schedules with and without a booster dose. Interpretation: In Vietnamese children with a relatively low pneumococcal carriage prevalence, 3 + 1, 2 + 1, 3 + 0 and two-dose PCV10 schedules were effective in reducing VT carriage. There were no discernible differences in the effect on carriage of the WHO-recommended 2 + 1 and 3 + 0 schedules during the first two years of life. Together with the previously reported immunogenicity data, this trial suggests that a range of PCV schedules are likely to generate significant direct and indirect protection. Funding: NHMRC, BMGF.

10.
Microbiol Spectr ; 11(1): e0361522, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36645282

ABSTRACT

Nonpharmaceutical interventions (NPIs) implemented to contain SARS-CoV-2 have decreased invasive pneumococcal disease. Previous studies have proposed the decline is due to reduced pneumococcal transmission or suppression of respiratory viruses, but the mechanism remains unclear. We undertook a secondary analysis of data collected from a clinical trial to evaluate the impact of NPIs on pneumococcal carriage and density, drivers of transmission and disease, during the COVID-19 pandemic in Ho Chi Minh City, Vietnam. Nasopharyngeal samples from children aged 24 months were assessed in three periods - one pre-COVID-19 period (n = 1,537) and two periods where NPIs were implemented with increasing stringency (NPI period 1 [NPI-1, n = 307], and NPI period 2 [NPI-2, n = 262]). Pneumococci were quantified using lytA quantitative PCR and serotyped by DNA microarray. Overall, capsular, and nonencapsulated pneumococcal carriage and density were assessed in each NPI period compared with the pre-COVID-19 period using unadjusted log-binomial and linear regression. Pneumococcal carriage was generally stable after the implementation of NPIs. In contrast, overall pneumococcal carriage density decreased by 0.44 log10 genome equivalents/mL (95% confidence interval [CI]: 0.19 to 0.69) in NPI-1 and by 0.84 log10 genome equivalents/mL (95% CI: 0.55 to 1.13) in NPI-2 compared with the pre-COVID-19 period. Reductions in overall pneumococcal density were driven by reductions in capsular pneumococci, with no corresponding reduction in nonencapsulated density. As higher pneumococcal density is a risk factor for disease, the decline in density provides a plausible explanation for the reductions in invasive pneumococcal disease that have been observed in many countries in the absence of a substantive reduction in pneumococcal carriage. IMPORTANCE The pneumococcus is a major cause of mortality globally. Implementation of NPIs during the COVID-19 pandemic led to reductions in invasive pneumococcal disease in many countries. However, no studies have conducted a fully quantitative assessment on the impact of NPIs on pneumococcal carriage density, which could explain this reduction. We evaluated the impact of COVID-19 NPIs on pneumococcal carriage prevalence and density in 2,106 children aged 24 months in Vietnam and found pneumococcal carriage density decreased up to 91.5% after NPI introduction compared with the pre-COVID-19 period, which was mainly attributed to capsular pneumococci. Only a minor effect on carriage prevalence was observed. As respiratory viruses are known to increase pneumococcal carriage density, transmission, and disease, this work suggests that interventions targeting respiratory viruses may have the added benefit of reducing invasive pneumococcal disease and explain the reductions observed following NPI implementation.


Subject(s)
COVID-19 , Pneumococcal Infections , Child , Humans , Infant , Streptococcus pneumoniae/genetics , COVID-19/epidemiology , COVID-19/prevention & control , Prevalence , Vietnam/epidemiology , Pandemics/prevention & control , SARS-CoV-2 , Carrier State/epidemiology , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & control
11.
BMJ Open ; 12(12): e061157, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36456016

ABSTRACT

INTRODUCTION: Infections are a leading cause of neonatal mortality globally and can be transmitted from mother-to-child vertically or horizontally. Fiji has higher rates of serious neonatal infections and infant skin and soft tissue infections (SSTIs) than high-income countries. Research from the Gambia found that a single dose of oral azithromycin in labour decreased bacterial carriage and infections in mothers and infants, particularly infant skin infections. The Bulabula MaPei clinical trial evaluates the safety and efficacy of a single dose of azithromycin in labour in reducing the incidence of maternal and infant SSTIs and other infections and the impact on bacterial carriage. It will also describe the effect of azithromycin on antimicrobial (AMR) resistance, the maternal and infant microbiome, and infant dysbiosis. METHODS AND ANALYSIS: We are conducting a blinded, placebo-controlled randomised clinical trial administering 2 g of oral azithromycin, or placebo, given to healthy, pregnant women (≥18 years) in labour in Suva, Fiji. The primary outcome is the cumulative incidence of SSTIs in infants by 3 months of age. Secondary outcomes include the incidence of other infant and maternal infections, and safety and tolerability of azithromycin in mother and infant. Following informed consent, 2110 pregnant women will be randomised in a 1:1 ratio, with all study staff and participants masked to group allocation. Mother/infant pairs will be followed up for 12 months over six visits collecting clinical data on infections, antimicrobial use, safety and anthropometrics, in addition to nasopharyngeal, oropharyngeal, rectovaginal and vaginal swabs, maternal breastmilk and infant stool samples, in order to compare bacterial carriage, AMR rates and microbiome. Recruitment for Bulabula MaPei started in June 2019. ETHICS AND DISSEMINATION: This trial was approved and is being conducted according to the protocol approved by The Royal Children's Hospital Human Research Ethics Committee, Australia, and the Fiji National Health Research and Ethics Review Committee. The findings of this study will be disseminated in peer-reviewed journals and presented at conferences. TRIAL REGISTRATION NUMBER: NCT03925480.


Subject(s)
Azithromycin , Labor, Obstetric , Pregnancy , Infant , Infant, Newborn , Humans , Female , Azithromycin/therapeutic use , Fiji , Infectious Disease Transmission, Vertical , Anti-Bacterial Agents/therapeutic use , Mothers , Randomized Controlled Trials as Topic
12.
Epidemics ; 41: 100625, 2022 12.
Article in English | MEDLINE | ID: mdl-36103782

ABSTRACT

BACKGROUND: Populations affected by humanitarian crises experience high burdens of acute respiratory infections (ARI), potentially driven by risk factors for severe disease such as poor nutrition and underlying conditions, and risk factors that may increase transmission such as overcrowding and the possibility of high social mixing. However, little is known about social mixing patterns in these populations. METHODS: We conducted a cross-sectional social contact survey among internally displaced people (IDP) living in Digaale, a permanent IDP camp in Somaliland. We included questions on household demographics, shelter quality, crowding, travel frequency, health status, and recent diagnosis of pneumonia, and assessed anthropometric status in children. We present the prevalence of several risk factors relevant to transmission of respiratory infections, and calculated age-standardised social contact matrices to assess population mixing. RESULTS: We found crowded households with high proportions of recent self-reported pneumonia (46% in children). 20% of children younger than five are stunted, and crude death rates are high in all age groups. ARI risk factors were common. Participants reported around 10 direct contacts per day. Social contact patterns are assortative by age, and physical contact rates are very high (78%). CONCLUSIONS: ARI risk factors are very common in this population, while the large degree of contacts that involve physical touch could further increase transmission. Such IDP settings potentially present a perfect storm of risk factors for ARIs and their transmission, and innovative approaches to address such risks are urgently needed.


Subject(s)
Respiratory Tract Infections , Child , Humans , Cross-Sectional Studies , Risk Factors , Respiratory Tract Infections/epidemiology , Family Characteristics , Prevalence
13.
Vaccine ; 40(36): 5366-5375, 2022 08 26.
Article in English | MEDLINE | ID: mdl-35934579

ABSTRACT

PURPOSE: Otitis media with effusion (OME) is common in young children and is associated with Streptococcus pneumoniae infection. We aimed to determine the impact of pneumococcal conjugate vaccine (PCV) introduction on the prevalence of OME and OME associated with vaccine-type (VT) or non-VT. METHODS: Population-based cross-sectional surveys were conducted in pre- (2016) and post-PCV periods (2017, 2018, and 2019) at selected communes in Nha Trang, Vietnam. For each survey, we randomly selected 60 children aged 4-11 months and 60 aged 14-23 months from each commune. Nasopharyngeal sample collection and tympanic membrane examination by digital otoscope were performed. S. pneumoniae was detected and serotyped by lytA qPCR and microarray. Odds ratios (OR) and 95% confidence intervals (CIs) were calculated using Firth's logistic regression, stratified by age group. RESULTS: Over the four surveys, 2089 children had a bilateral ear examination. Compared to pre-PCV, the prevalence of OME reduced in 2018 (OR 0.51, 95 %CI 0.28-0.93) and in 2019 (OR 0.53, 95 %CI 0.29-0.97) among the <12-month-olds, but no significant reduction among the 12-23-month-olds. The prevalence of OME associated with VT pneumococcus decreased in 2018 and 2019 (2018: OR 0.14, 95 %CI 0.03-0.55; 2019: OR 0.20, 95 %CI 0.05-0.69 in the <12-months-olds, 2018: OR 0.05, 95 %CI 0.00-0.44, 2019: OR 0.41, 95 %CI 0.10-1.61 in the 12-23-months-olds). The prevalence of OME associated with non-VT pneumococcus increased in the 12-23-month-olds in 2017 (OR 3.09, 95 %CI 1.47-7.45) and returned to the pre-PCV level of prevalence in 2018 and 2019 (OR 0.94, 95 %CI 0.40-2.43 and 1.40, 95 %CI 0.63-3.49). CONCLUSION: PCV10 introduction was associated with a reduction of OME prevalence in infants but not in older children.


Subject(s)
Otitis Media with Effusion , Otitis Media , Pneumococcal Infections , Carrier State/epidemiology , Cross-Sectional Studies , Humans , Infant , Nasopharynx , Otitis Media/epidemiology , Otitis Media/prevention & control , Otitis Media with Effusion/epidemiology , Otitis Media with Effusion/prevention & control , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines , Prevalence , Streptococcus pneumoniae , Vaccines, Conjugate/pharmacology , Vietnam/epidemiology
14.
Microbiol Spectr ; 10(4): e0152422, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35862970

ABSTRACT

Streptococcus pneumoniae (the pneumococcus) is a human pathogen of global importance, classified into serotypes based on the type of capsular polysaccharide produced. Serotyping of pneumococci is essential for disease surveillance and vaccine impact measurement. However, the accuracy of serotyping methods can be affected by previously undiscovered variants. Previous studies have identified variants of serotype 14, a highly invasive serotype included in all licensed vaccine formulations. However, the potential of these variants to influence serotyping accuracy and evade vaccine-induced protection has not been investigated. In this study, we screened 1,386 nasopharyngeal swabs from children hospitalized with acute respiratory infection in Papua New Guinea for pneumococci. Swabs containing pneumococci (n = 1,226) were serotyped by microarray to identify pneumococci with a divergent serotype 14 capsule locus. Three serotype 14 variants ('14-like') were isolated and characterized further. The serotyping results of these isolates using molecular methods varied depending on the method, with 3/3 typing as nontypeable (PneumoCaT), 3/3 typing as serotype 14 (seroBA), and 2/3 typing as serotype 14 (SeroCall and quantitative PCR). All three isolates were nontypeable by phenotypic methods (Quellung and latex agglutination), indicating the absence of capsule. Illumina and nanopore sequencing were employed to examine their capsule loci and revealed unique mutations. Lastly, when incubated with sera from vaccinated individuals, the 14-like isolates evaded serotype-specific opsonophagocytic killing. Our study highlights the need for phenotypic testing to validate serotyping data derived from molecular methods. The convergent evolution of capsule loss underscores the importance of studying pneumococcal population biology to monitor the emergence of pneumococci capable of vaccine escape, globally. IMPORTANCE Pneumococcus is a pathogen of major public health importance. Current vaccines have limited valency, targeting a subset (up to 20) of the more than 100 capsule types (serotypes). Precise serotyping methods are therefore essential to avoid mistyping, which can reduce the accuracy of data used to inform decisions around vaccine introduction and/or maintenance of national vaccination programs. In this study, we examine a variant of serotype 14 (14-like), a virulent serotype present in all currently licensed vaccine formulations. Although these 14-like pneumococci no longer produce a serotype 14 capsule, widely used molecular methods can mistype them as serotype 14. Importantly, we show that 14-like pneumococci can evade opsonophagocytic killing mediated by vaccination. Despite the high accuracy of molecular methods for serotyping, our study reemphasizes their limitations. This is particularly relevant in situations where nonvaccine type pneumococci (e.g., the 14-likes in this study) could potentially be misidentified as a vaccine type (e.g., serotype 14).


Subject(s)
Pneumococcal Infections , Streptococcus pneumoniae , Child , Humans , Papua New Guinea/epidemiology , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines , Serogroup , Serotyping/methods , Streptococcus pneumoniae/genetics
15.
PLoS Med ; 19(5): e1004016, 2022 05.
Article in English | MEDLINE | ID: mdl-35639774

ABSTRACT

BACKGROUND: Infants are at highest risk of pneumococcal disease. Their added protection through herd effects is a key part in the considerations on optimal pneumococcal vaccination strategies. Yet, little is currently known about the main transmission pathways to this vulnerable age group. Hence, this study investigates pneumococcal transmission routes to infants in the coastal city of Nha Trang, Vietnam. METHODS AND FINDINGS: In October 2018, we conducted a nested cross-sectional contact and pneumococcal carriage survey in randomly selected 4- to 11-month-old infants across all 27 communes of Nha Trang. Bayesian logistic regression models were used to estimate age specific carriage prevalence in the population, a proxy for the probability that a contact of a given age could lead to pneumococcal exposure for the infant. We used another Bayesian logistic regression model to estimate the correlation between infant carriage and the probability that at least one of their reported contacts carried pneumococci, controlling for age and locality. In total, 1,583 infants between 4 and 13 months old participated, with 7,428 contacts reported. Few infants (5%, or 86 infants) attended day care, and carriage prevalence was 22% (353 infants). Most infants (61%, or 966 infants) had less than a 25% probability to have had close contact with a pneumococcal carrier on the surveyed day. Pneumococcal infection risk and contact behaviour were highly correlated: If adjusted for age and locality, the odds of an infant's carriage increased by 22% (95% confidence interval (CI): 15 to 29) per 10 percentage points increase in the probability to have had close contact with at least 1 pneumococcal carrier. Moreover, 2- to 6-year-old children contributed 51% (95% CI: 39 to 63) to the total direct pneumococcal exposure risks to infants in this setting. The main limitation of this study is that exposure risk was assessed indirectly by the age-dependent propensity for carriage of a contact and not by assessing carriage of such contacts directly. CONCLUSIONS: In this study, we observed that cross-sectional contact and infection studies could help identify pneumococcal transmission routes and that preschool-age children may be the largest reservoir for pneumococcal transmission to infants in Nha Trang, Vietnam.


Subject(s)
Carrier State , Pneumococcal Infections , Bayes Theorem , Carrier State/epidemiology , Child , Child, Preschool , Cross-Sectional Studies , Humans , Infant , Nasopharynx , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines , Streptococcus pneumoniae , Vietnam/epidemiology
17.
Lancet Reg Health West Pac ; 22: 100432, 2022 May.
Article in English | MEDLINE | ID: mdl-35308576

ABSTRACT

Background: Pneumonia is a leading cause of childhood mortality with Streptococcus pneumoniae a major contributor. Pneumococcal conjugate vaccines (PCVs) have been introduced into immunisation programs in many low- to middle-income countries (LMICs) yet there is a paucity of data evaluating the effectiveness in these settings. We assess the effectiveness of 13-valent PCV (13vPCV) against hypoxic pneumonia, hospitalisation and other clinical endpoints in children <5 years living in Eastern Highlands Province, Papua New Guinea (PNG). Methods: Data from two consecutive prospective observational studies (2013-2019) enrolling children <60 months presenting with pneumonia were included. Hypoxic pneumonia was defined as oxygen saturations <90%. Outcomes included hospitalisation, severe clinical pneumonia and death. 13vPCV status was determined using written records. Logistic regression models were used to estimate the odds ratios of key outcomes by 13vPCV vaccination status adjusted for confounders using inverse probability of treatment weighting. Findings: Data from 2067 children (median age; 9 months [IQR: 5-11]) were included. 739 children (36.1%) were hypoxic and 623 (30.4%) hospitalised. Twelve children (0.6% of total cohort) died in hospital. 670 children (32.7%) were fully 13vPCV-vaccinated. 13vPCV vaccination was associated with a 28.7% reduction (95% confidence interval [CI]: 9.9; 43.6%) in hypoxic pneumonia and a 57.4% reduction (38.0; 70.7%) in pneumonia hospitalisation. Interpretation: 13vPCV vaccination is effective against hypoxic pneumonia and pneumonia hospitalisation in PNG children. Strategies to improve access to and coverage of 13vPCV in PNG and other similar LMICs are urgently required. Funding: Funded by Pfizer Global and the Bill & Melinda Gates Foundation.

18.
Front Pharmacol ; 13: 835848, 2022.
Article in English | MEDLINE | ID: mdl-35273509

ABSTRACT

Asthmatics are highly susceptible to developing lower respiratory tract infections caused by Streptococcus pneumoniae (SPN, the pneumococcus). It has recently emerged that underlying allergic airway disease creates a lung microenvironment that is defective in controlling pneumococcal lung infections. In the present study, we examined how house dust mite (HDM) aeroallergen exposure altered immunity to acute pneumococcal lung infection. Alveolar macrophage (AM) isolated from HDM-exposed mice expressed alternatively activated macrophage (AAM) markers including YM1, FIZZ1, IL-10, and ARG-1. In vivo, prior HDM exposure resulted in accumulation of AAMs in the lungs and 2-log higher bacterial titres in the bronchoalveolar (BAL) fluid of SPN-infected mice (Day 2). Acute pneumococcal infection further increased the expression of IL-10 and ARG1 in the lungs of HDM-exposed mice. Moreover, prior HDM exposure attenuated neutrophil extracellular traps (NETs) formation in the lungs and dsDNA levels in the BAL fluid of SPN-infected mice. In addition, HDM-SPN infected animals had significantly increased BAL fluid cellularity driven by an influx of macrophages/monocytes, neutrophils, and eosinophils. Increased lung inflammation and mucus production was also evident in HDM-sensitised mice following acute pneumococcal infection, which was associated with exacerbated airway hyperresponsiveness. Of note, PCV13 vaccination modestly reduced pneumococcal titres in the BAL fluid of HDM-exposed animals and did not prevent BAL inflammation. Our findings provide new insights on the relationship between pneumococcal lung infections and allergic airways disease, where defective AM phagocytosis and NETosis are implicated in increased susceptibility to pneumococcal infection.

19.
Paediatr Respir Rev ; 44: 61-69, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35227628

ABSTRACT

CONTEXT: In contrast with other respiratory viruses, children infected with SARS-CoV-2 are largely spared from severe COVID-19. OBJECTIVES: To critically assess age-related differences in three host proteins involved in SARS-CoV-2 cellular entry: angiotensin-converting enzyme 2 (ACE2), transmembrane serine protease 2 (TMPRSS2) and furin. METHODS: We systematically searched Medline, Embase, and PubMed databases for relevant publications. Studies were eligible if they evaluated ACE2, TMPRSS2 or furin expression, methylation, or protein level in children. RESULTS: Sixteen papers were included. Age-dependent differences in membrane-bound and soluble ACE2 were shown in several studies, with ACE2 expression increasing with age. TMPRSS2 and furin are key proteases involved in SARS-CoV-2 spike protein cleavage. TMPRSS2 expression is increased by circulating androgens and is thus low in pre-pubertal children. Furin has not currently been well researched. LIMITATIONS: High levels of study heterogeneity. CONCLUSIONS: Low expression of key host proteins may partially explain the reduced incidence of severe COVID-19 among children, although further research is needed.


Subject(s)
COVID-19 , SARS-CoV-2 , Child , Humans , SARS-CoV-2/metabolism , Peptidyl-Dipeptidase A/metabolism , Spike Glycoprotein, Coronavirus/metabolism
20.
mSphere ; 7(1): e0098421, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35044807

ABSTRACT

Streptococcus pneumoniae (the pneumococcus) is a leading cause of pneumonia in children under 5 years of age. Coinfection by pneumococci and respiratory viruses enhances disease severity. Little is known about pneumococcal coinfections with respiratory syncytial virus (RSV). Here, we developed a novel infant mouse model of coinfection using pneumonia virus of mice (PVM), a murine analogue of RSV, to examine the dynamics of coinfection in the upper respiratory tract, an anatomical niche that is essential for host-to-host transmission and progression to disease. Coinfection increased damage to the nasal tissue and increased production of the chemokine CCL3. Nasopharyngeal pneumococcal density and shedding in nasal secretions were increased by coinfection. In contrast, coinfection reduced PVM loads in the nasopharynx, an effect that was independent of pneumococcal strain and the order of infection. We showed that this "antagonistic" effect was absent using either ethanol-killed pneumococci or a pneumococcal mutant deficient in capsule production and incapable of nasopharyngeal carriage. Colonization with a pneumococcal strain naturally unable to produce capsule also reduced viral loads. The pneumococcus-mediated reduction in PVM loads was caused by accelerated viral clearance from the nasopharynx. Although these synergistic and antagonistic effects occurred with both wild-type pneumococcal strains used in this study, the magnitude of the effects was strain dependent. Lastly, we showed that pneumococci can also antagonize influenza virus. Taken together, our study has uncovered multiple novel facets of bacterial-viral coinfection. Our findings have important public health implications, including for bacterial and viral vaccination strategies in young children. IMPORTANCE Respiratory bacterial-viral coinfections (such as pneumococci and influenza virus) are often synergistic, resulting in enhanced disease severity. Although colonization of the nasopharynx is the precursor to disease and transmission, little is known about bacterial-viral interactions that occur within this niche. In this study, we developed a novel mouse model to examine pneumococcal-viral interactions in the nasopharynx with pneumonia virus of mice (PVM) and influenza. We found that PVM infection benefits pneumococci by increasing their numbers in the nasopharynx and shedding of these bacteria in respiratory secretions. In contrast, we discovered that pneumococci decrease PVM numbers by accelerating viral clearance. We also report a similar effect of pneumococci on influenza. By showing that coinfections lead to both synergistic and antagonistic outcomes, our findings challenge the existing dogma in the field. Our work has important applications and implications for bacterial and viral vaccines that target these microbes.


Subject(s)
Antibiosis , Coinfection/microbiology , Coinfection/virology , Pneumococcal Infections/virology , Pneumovirus Infections/virology , Respiratory System/virology , Age Factors , Animals , Coinfection/immunology , Cytokines/analysis , Cytokines/immunology , Disease Models, Animal , Influenza A virus/genetics , Influenza A virus/immunology , Mice , Mice, Inbred C57BL , Murine pneumonia virus/genetics , Murine pneumonia virus/immunology , Nasopharynx/virology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Pneumovirus Infections/immunology , Respiratory System/immunology , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/immunology , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL
...