Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 6082, 2024 03 13.
Article in English | MEDLINE | ID: mdl-38480759

ABSTRACT

Melanoma response to immune-modulating therapy remains incompletely characterized at the molecular level. In this study, we assess melanoma immunotherapy response using a multi-scale network approach to identify gene modules with coordinated gene expression in response to treatment. Using gene expression data of melanoma before and after treatment with nivolumab, we modeled gene expression changes in a correlation network and measured a key network geometric property, dynamic Ollivier-Ricci curvature, to distinguish critical edges within the network and reveal multi-scale treatment-response gene communities. Analysis identified six distinct gene modules corresponding to sets of genes interacting in response to immunotherapy. One module alone, overlapping with the nuclear factor kappa-B pathway (NFkB), was associated with improved patient survival and a positive clinical response to immunotherapy. This analysis demonstrates the usefulness of dynamic Ollivier-Ricci curvature as a general method for identifying information-sharing gene modules in cancer.


Subject(s)
Melanoma , Humans , Melanoma/genetics , Melanoma/therapy , Gene Regulatory Networks , Immunotherapy
2.
bioRxiv ; 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38045365

ABSTRACT

Melanoma response to immune-modulating therapy remains incompletely characterized at the molecular level. In this study, we assess melanoma immunotherapy response using a multi-scale network approach to identify gene modules with coordinated gene expression in response to treatment. Using gene expression data of melanoma before and after treatment with nivolumab, we modeled gene expression changes in a correlation network and measured a key network geometric property, dynamic Ollivier-Ricci curvature, to distinguish critical edges within the network and reveal multi-scale treatment-response gene communities. Analysis identified six distinct gene modules corresponding to sets of genes interacting in response to immunotherapy. One module alone, overlapping with the nuclear factor kappa-B pathway (NFKB), was associated with improved patient survival and a positive clinical response to immunotherapy. This analysis demonstrates the usefulness of dynamic Ollivier-Ricci curvature as a general method for identifying information-sharing gene modules in cancer.

3.
Sci Rep ; 12(1): 20879, 2022 12 03.
Article in English | MEDLINE | ID: mdl-36463292

ABSTRACT

Protein interactions form a complex dynamic molecular system that shapes cell phenotype and function; in this regard, network analysis is a powerful tool for studying the dynamics of cellular processes. Current models of protein interaction networks are limited in that the standard graph model can only represent pairwise relationships. Higher-order interactions are well-characterized in biology, including protein complex formation and feedback or feedforward loops. These higher-order relationships are better represented by a hypergraph as a generalized network model. Here, we present an approach to analyzing dynamic gene expression data using a hypergraph model and quantify network heterogeneity via Forman-Ricci curvature. We observe, on a global level, increased network curvature in pluripotent stem cells and cancer cells. Further, we use local curvature to conduct pathway analysis in a melanoma dataset, finding increased curvature in several oncogenic pathways and decreased curvature in tumor suppressor pathways. We compare this approach to a graph-based model and a differential gene expression approach.


Subject(s)
Melanoma , Protein Interaction Maps , Humans , Records , Carcinogenesis , Melanoma/genetics , Oncogenes
4.
Sci Rep ; 12(1): 8295, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35585156

ABSTRACT

While standard graph-theoretic measures have been widely used to characterize atypical resting-state functional connectivity in autism spectrum disorder (ASD), geometry-inspired network measures have not been applied. In this study, we apply Forman-Ricci and Ollivier-Ricci curvatures to compare networks of ASD and typically developing individuals (N = 1112) from the Autism Brain Imaging Data Exchange I (ABIDE-I) dataset. We find brain-wide and region-specific ASD-related differences for both Forman-Ricci and Ollivier-Ricci curvatures, with region-specific differences concentrated in Default Mode, Somatomotor and Ventral Attention networks for Forman-Ricci curvature. We use meta-analysis decoding to demonstrate that brain regions with curvature differences are associated to those cognitive domains known to be impaired in ASD. Further, we show that brain regions with curvature differences overlap with those brain regions whose non-invasive stimulation improves ASD-related symptoms. These results suggest the utility of graph Ricci curvatures in characterizing atypical connectivity of clinically relevant regions in ASD and other neurodevelopmental disorders.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Autism Spectrum Disorder/diagnostic imaging , Brain/diagnostic imaging , Brain Mapping/methods , Humans , Magnetic Resonance Imaging/methods , Neural Pathways
5.
R Soc Open Sci ; 8(2): 201734, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33972862

ABSTRACT

The complexity of financial markets arise from the strategic interactions among agents trading stocks, which manifest in the form of vibrant correlation patterns among stock prices. Over the past few decades, complex financial markets have often been represented as networks whose interacting pairs of nodes are stocks, connected by edges that signify the correlation strengths. However, we often have interactions that occur in groups of three or more nodes, and these cannot be described simply by pairwise interactions but we also need to take the relations between these interactions into account. Only recently, researchers have started devoting attention to the higher-order architecture of complex financial systems, that can significantly enhance our ability to estimate systemic risk as well as measure the robustness of financial systems in terms of market efficiency. Geometry-inspired network measures, such as the Ollivier-Ricci curvature and Forman-Ricci curvature, can be used to capture the network fragility and continuously monitor financial dynamics. Here, we explore the utility of such discrete Ricci curvatures in characterizing the structure of financial systems, and further, evaluate them as generic indicators of the market instability. For this purpose, we examine the daily returns from a set of stocks comprising the USA S&P-500 and the Japanese Nikkei-225 over a 32-year period, and monitor the changes in the edge-centric network curvatures. We find that the different geometric measures capture well the system-level features of the market and hence we can distinguish between the normal or 'business-as-usual' periods and all the major market crashes. This can be very useful in strategic designing of financial systems and regulating the markets in order to tackle financial instabilities.

6.
Sci Rep ; 9(1): 13817, 2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31554857

ABSTRACT

Topological data analysis can reveal higher-order structure beyond pairwise connections between vertices in complex networks. We present a new method based on discrete Morse theory to study topological properties of unweighted and undirected networks using persistent homology. Leveraging on the features of discrete Morse theory, our method not only captures the topology of the clique complex of such graphs via the concept of critical simplices, but also achieves close to the theoretical minimum number of critical simplices in several analyzed model and real networks. This leads to a reduced filtration scheme based on the subsequence of the corresponding critical weights, thereby leading to a significant increase in computational efficiency. We have employed our filtration scheme to explore the persistent homology of several model and real-world networks. In particular, we show that our method can detect differences in the higher-order structure of networks, and the corresponding persistence diagrams can be used to distinguish between different model networks. In summary, our method based on discrete Morse theory further increases the applicability of persistent homology to investigate the global topology of complex networks.

7.
Sci Rep ; 8(1): 8650, 2018 Jun 05.
Article in English | MEDLINE | ID: mdl-29872167

ABSTRACT

We have performed an empirical comparison of two distinct notions of discrete Ricci curvature for graphs or networks, namely, the Forman-Ricci curvature and Ollivier-Ricci curvature. Importantly, these two discretizations of the Ricci curvature were developed based on different properties of the classical smooth notion, and thus, the two notions shed light on different aspects of network structure and behavior. Nevertheless, our extensive computational analysis in a wide range of both model and real-world networks shows that the two discretizations of Ricci curvature are highly correlated in many networks. Moreover, we show that if one considers the augmented Forman-Ricci curvature which also accounts for the two-dimensional simplicial complexes arising in graphs, the observed correlation between the two discretizations is even higher, especially, in real networks. Besides the potential theoretical implications of these observations, the close relationship between the two discretizations has practical implications whereby Forman-Ricci curvature can be employed in place of Ollivier-Ricci curvature for faster computation in larger real-world networks whenever coarse analysis suffices.

SELECTION OF CITATIONS
SEARCH DETAIL