Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
Molecules ; 29(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38893411

ABSTRACT

The symbiotic relationship between nitrogen-fixing cyanobacteria and plants offers a promising avenue for sustainable agricultural practices and environmental remediation. This review paper explores the molecular interactions between nitrogen-fixing cyanobacteria and nanoparticles, shedding light on their potential synergies in agricultural nanotechnology. Delving into the evolutionary history and specialized adaptations of cyanobacteria, this paper highlights their pivotal role in fixing atmospheric nitrogen, which is crucial for ecosystem productivity. The review discusses the unique characteristics of metal nanoparticles and their emerging applications in agriculture, including improved nutrient delivery, stress tolerance, and disease resistance. It delves into the complex mechanisms of nanoparticle entry into plant cells, intracellular transport, and localization, uncovering the impact on root-shoot translocation and systemic distribution. Furthermore, the paper elucidates cellular responses to nanoparticle exposure, emphasizing oxidative stress, signaling pathways, and enhanced nutrient uptake. The potential of metal nanoparticles as carriers of essential nutrients and their implications for nutrient-use efficiency and crop yield are also explored. Insights into the modulation of plant stress responses, disease resistance, and phytoremediation strategies demonstrate the multifaceted benefits of nanoparticles in agriculture. Current trends, prospects, and challenges in agricultural nanotechnology are discussed, underscoring the need for responsible and safe nanoparticle utilization. By harnessing the power of nitrogen-fixing cyanobacteria and leveraging the unique attributes of nanoparticles, this review paves the way for innovative, sustainable, and efficient agricultural practices.


Subject(s)
Agriculture , Cyanobacteria , Nanotechnology , Nitrogen Fixation , Cyanobacteria/metabolism , Nanotechnology/methods , Agriculture/methods , Metal Nanoparticles/chemistry , Nitrogen/metabolism , Symbiosis , Nanoparticles/chemistry
2.
BMC Plant Biol ; 24(1): 502, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840053

ABSTRACT

BACKGROUND: Lentil is a significant legume that are consumed as a staple food and have a significant economic impact around the world. The purpose of the present research on lentil was to assess the hydrothermal time model's capacity to explain the dynamics of Lens culinaris L. var. Markaz-09 seed germination, as well as to ascertain the germination responses at various sub-optimal temperatures (T) and water potentials (Ψ). In order to study lentil seed germination (SG) behavior at variable water potentials (Ψs) and temperatures (Ts). A lab experiment employing the hydrothermal time model was created. Seeds were germinated at six distinct temperatures: 15 0С, 20 0С, 25 0С, 30 0С, 35 0С, and 40 0С, with five Ψs of 0, -0.3, -0.6, -0.9, and - 1.2 MPa in a PEG-6000 (Polyethylene glycol 6000) solution. RESULTS: The results indicated that the agronomic parameters like Germination index (GI), Germination energy (GE), Timson germination index (TGI), were maximum in 25 0C at (-0.9 MPa) and lowest at 40 0C in 0 MPa. On other hand, mean germination time (MGT) value was highest at 15 0C in -1.2 MPa and minimum at 40 0C in (-0.6 MPa) while Mean germination rate (MGR) was maximum at 40 0C in (0 MPa) and minimum at 15 0C in (-0.6 MPa). CONCLUSIONS: The HTT model eventually defined the germination response of Lens culinaris L. var. Markaz-09 (Lentil) for all Ts and Ψs, allowing it to be employed as a predictive tool in Lens culinaris L. var. Markaz-09 (Lentil) seed germination simulation models.


Subject(s)
Germination , Lens Plant , Seeds , Temperature , Germination/physiology , Seeds/physiology , Seeds/growth & development , Lens Plant/physiology , Lens Plant/growth & development , Water/metabolism , Models, Biological , Osmotic Pressure
3.
BMC Plant Biol ; 24(1): 477, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816803

ABSTRACT

BACKGROUND: The rate of germination and other physiological characteristics of seeds that are germinating are impacted by deep sowing. Based on the results of earlier studies, conclusions were drawn that deep sowing altered the physio-biochemical and agronomic characteristics of wheat (Triticum aestivum L.). RESULTS: In this study, seeds of wheat were sown at 2 (control) and 6 cm depth and the impact of exogenously applied salicylic acid and tocopherol (Vitamin-E) on its physio-biochemical and agronomic features was assessed. As a result, seeds grown at 2 cm depth witnessed an increase in mean germination time, germination percentage, germination rate index, germination energy, and seed vigor index. In contrast, 6 cm deep sowing resulted in negatively affecting all the aforementioned agronomic characteristics. In addition, deep planting led to a rise in MDA, glutathione reductase, and antioxidants enzymes including APX, POD, and SOD concentration. Moreover, the concentration of chlorophyll a, b, carotenoids, proline, protein, sugar, hydrogen peroxide, and agronomic attributes was boosted significantly with exogenously applied salicylic acid and tocopherol under deep sowing stress. CONCLUSIONS: The results of the study showed that the depth of seed sowing has an impact on agronomic and physio-biochemical characteristics and that the negative effects of deep sowing stress can be reduced by applying salicylic acid and tocopherol to the leaves.


Subject(s)
Germination , Salicylic Acid , Tocopherols , Triticum , Triticum/growth & development , Triticum/metabolism , Triticum/drug effects , Salicylic Acid/pharmacology , Salicylic Acid/metabolism , Tocopherols/metabolism , Germination/drug effects , Seeds/drug effects , Seeds/growth & development , Antioxidants/metabolism , Stress, Physiological , Sustainable Development , Chlorophyll/metabolism
4.
Food Chem X ; 22: 101418, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38736980

ABSTRACT

Purpose of current study was to determine physicochemical, triglyceride composition, and functional groups of wild adlay accessions (brown, black, yellow, grey, green, off white, and purple) to find out its scope as cereal crop. Triglycerides, minerals and functional groups were determined through Gas chromatography, spectrophotometer and Fourier Transform Infrared (FTIR) spectrophotometer respectively. Results revealed variation among bulk densities, specific densities, percent empty spaces, and corresponding grain counts per 10 g of sample are useful in distinguishing brown, black, yellow, grey, green, off white, and purple wild adlay accessions. Specific density and grain count per 10 g sample was significantly related. No statistical relationship exists among the pronounced physical characteristics. Brown adlay expressed the highest protein, fat, and fiber contents 15.82%, 4.76% and 2.37% respectively. Protein, fat, ash, and fiber percent contents were found comparable to cultivated adlay. Spectrophotometric analysis revealed macro elements including phosphorus, potassium, calcium, and sodium in the range 0.3% - 2.2% and micro elements boron, iron, copper, zinc, and manganese in the range 1.6 mg/kg - 20.8 mg/kg. Gas chromatography showed polyunsaturated fatty acids (PUFA) constitute the primary fraction (39% ± 7.2) of wild adlay triglycerides. Linoleic and palmitic acids were present as prominent fatty acids, 43.5% ±1.4 and 26.3% ±1.4 respectively. Infra-red frequencies distinguished functional groups in narrow band and fingerprint region of protein in association with out of plane region leading to structural differences among adlay accessions. Comparison of major distinguishing vibrational frequencies among different flours indicated black adlay containing highest functional groups appeared promising for varietal development.

5.
Heliyon ; 10(7): e28766, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38576555

ABSTRACT

For thousands of years, plants have been utilized for medicinal purposes. For its naturally existing antibacterial properties, Nigella sativa is one of the most researched herbs. A study was conducted during rabi 2020-21 at The University of Haripur in order to evaluate the potential of ascorbic acid as plant growth enhancer. Two concentrations of ascorbic acid i-e 350 µm and 400 µm were sprayed along with control and water only spray on Nigella sativa crop. The study was arranged in RCBD two factor factorial arrangement. Factor A: ascorbic acid concentrations along with control and water spray, factor B: Growth stages (Stage1 = 40 days after sowing, Stage 2 = 80 DAS, Stage 3 = 120 DAS, Stage 4 = 40 + 80 DAS, Stage 5 = 40 + 120 DAS, Stage 6 = 80 + 120 DAS, Stage 7 = 40 + 80 + 120 DAS). Crop was sown in first week of November. Results reviled that chlorophyll b content, fixed oil content, 1000 seed weight, grain yield, Photosynthetic rate (µ mole m-2s-1), Transpiration rate (mmole m-2s-1), photosynthetic water use efficiency, Internal CO2 concentration (Ci) of leaf tissue and Stomatal conductance (mmole m-2s-1) were significantly affected by ascorbic acid concentrations and stage of application. Crop growth rate increased by 19.88% and 17.29%, chlorophyll b by 12.3% and 11.2%, fixed oil by 11.7% and 9%, grain yield by 10.29% and 9.8%, harvest index by 4% and 5.7% photosynthetic rate by 33%, 20% and stomatal conductance by 24.24% and 24.25 with application of ascorbic acid @ 350 µm, over control and water spray respectively. On the basis of these results it is concluded that application of ascorbic acid at the rate of 350 µm, followed by ascorbic acid at the rate of 400 µm significantly improves black cumin (Nigella sativa) yield and production. Hence it is recommended to apply ascorbic acid at the rate of 350 µm at 40 + 80+120 days after sowing of Nigella sativa crop for obtaining maximum results.

6.
Food Chem X ; 21: 101209, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38384684

ABSTRACT

Fermentation of fruit and vegetable juices with probiotics is a novel nutritional approach with potential health benefits. Lactic acid fermentation-based biotransformation results in changes in the profile and nature of bioactive compounds and improves the organoleptic properties, shelf life and bioavailability of vitamins and minerals in the fermented juices. This process has been shown to enrich the phenolic profile and bioactivity components of the juices, resulting in a new type of functional food with improved health benefits. Fruits and vegetables are the ideal substrate for microbial growth, and fruit and vegetable juice will produce rich nutrients and a variety of functional activities after fermentation, so that the high-quality utilization of fruits and vegetables is realized, and the future fermented fruit and vegetable juice products have a wide application market. This paper explores the typical fermentation methods for fruit and vegetable juices, investigates the bioactive components, functional activities, and the influence of fermentation on enhancing the quality of fruit and vegetable juices. The insights derived from this study carry significant implications for guiding the development of fermented fruit and vegetable juice industry.

7.
Environ Sci Pollut Res Int ; 31(2): 2258-2278, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38055171

ABSTRACT

The modern era of globalization, economic development, and increase in manufacturing activity pose severe risks to the natural environment. In this context, industries must prioritize sustainable economic growth and development. Thus, the purpose of this study is to provide insight into industrial competition, renewable energy, economic freedom, manufacturing value added, economic growth, and carbon dioxide emissions (CO2 emissions) in the top ten high-income countries from 1997 to 2019. The results from panel cross-sectional autoregressive distributed lag (CS-ARDL), augmented mean group (AMG), and common correlated effects mean group (CCEMG) techniques revealed that economic growth and industrial production have a harmful influence on CO2 emissions. Meanwhile, industrial competitiveness, renewable energy, and economic freedom are all negatively associated with CO2 emissions. This specifies that industrial competitiveness, renewable energy, and economic freedom are favorably related to environmental sustainability by limiting CO2 emissions in the top ten high-income countries. These findings imply that governments and responsible authorities/policymakers develop strategies to reduce the environmental impact of manufacturing value addition and economic growth in the top ten high-income countries and allocate more financial resources to renewable energy and promote industrial competition.


Subject(s)
Carbon Dioxide , Industrial Development , Cross-Sectional Studies , Industry , Economic Development , Renewable Energy
8.
Sci Total Environ ; 912: 168956, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38043817

ABSTRACT

To solve the problem of excessive heavy metals in farmland soil, there is a dire need for research effort to screen for the soil passivator materials. This study aimed to develop a practical novel approach for improving the potato growth and remedial effectiveness of the metals by optimal combination and dosage of various passivators. Experimental treatments were comprised of various levels of passivating agents (sepiolite, quicklime and calcium magnesium phosphate) in individual and combined form. Results showed that application of passivating agents significantly enhanced growth by optimizing photosynthetic attributes, enzymatic antioxidants, and soil health. Balanced application of passivators effectively reduce the bioavailability of metals, curbing their uptake by potato plants. Sole application of all the agents results statistically similar outcomes as compared with combined form. Additionally, passivators indirectly enhance the activity of essential antioxidant enzymes. Synergistic effect of all the agents significantly improved the tuber quality by decreasing the accumulation of proline, malondialdehyde content, and bioaccumulation of Cu, Pb, Cd, and As in potato parts. In crux, combined usage of passivating agents proved to be of better growth, improvement in antioxidative defense system, and better quality of potato. By mitigating heavy metal contamination, passivators not only enhance crop quality and yield but also ensure heavy metal-free potatoes that meet stringent food safety standards.


Subject(s)
Metals, Heavy , Soil Pollutants , Solanum tuberosum , Soil , Antioxidants , Soil Pollutants/analysis , Metals, Heavy/analysis
9.
PLoS One ; 18(12): e0293890, 2023.
Article in English | MEDLINE | ID: mdl-38064428

ABSTRACT

In the era of globalization, financial development plays a key role in socioeconomic and environmental development. However, its adverse consequences on human life, environmental hazards, and high energy consumption cannot be ignored. Thus, this study investigates the non-linear relationship between globalization, financial development, and energy consumption for BRICS economies. In doing so, we have applied second-generation tests to identify cross-sectional dependence in the data. Cross-sectional augmented Dickey-Fuller (CADF) and Cross-sectional Im-Pesaran Shin (CIPS) have been performed to find the stationary level of variables. The long-term equilibrium link between the investigated variables has been established in continuance using the Westerlund Cointegration test. The Dynamic Seemingly Unrelated Regression (DSUR) indicates that U-shaped relationships exist for financial development and globalization with energy consumption. Conversely, there is an inverted U-shaped relationship exist between economic growth and energy consumption in BRICS. The Dumitrescu-Hurlin panel causality test findings show that a unidirectional link runs from energy consumption to financial development, economic growth to energy consumption, and globalization towards energy usage. Important policy implications have also been discussed.


Subject(s)
Carbon Dioxide , Economic Development , Humans , Cross-Sectional Studies , Internationality , Policy , Renewable Energy
10.
PeerJ ; 11: e16179, 2023.
Article in English | MEDLINE | ID: mdl-37941932

ABSTRACT

Cultivation of high-yield varieties and unbalanced fertilization have induced micronutrient deficiency in soils worldwide. Zinc (Zn) is an essential nutrient for plant growth and its deficiency is most common in alkaline and calcareous soils. Therefore, this study aimed to evaluate the effect of Zn applied either alone or in combination with foliar application on the quality and production of wheat grown in alkaline soils. Zn was applied in the form of zinc sulfate (ZnSo4) to the soil and as a foliar spray during the sowing and tillering stages, respectively. Results showed that Zn fertilization of wheat, irrespective of modes of application, significantly increased grain and biological yield, grain per spike, and 1,000 grains weight over control; however, its effect was more noticeable when applied as 7.5 kg ha-1 of soil Zn combined with foliar Zn at 2.5 kg ha-1. Zn application significantly increased the grain protein content from 9.40% in the control to a maximum of 11.83% at soil Zn of 10 kg ha-1. Similarly, Zn application improved Zn, phosphorus (P), and potassium (K) concentrations in wheat grains. Moreover, correlation analysis showed that the grain Zn concentration was positively correlated with the grain P concentration. The correlation between P concentration in wheat grains and 1,000 grain weight was not significant. A total of 1,000 grains weight was positively correlated with tillers per plant, grain yield, and biological yield. There were positive correlations between protein content, biological yield, grain yield, and tillers per plant. Therefore, soil-applied Zn + foliar application in alkaline soils with limited Zn availability is crucial for improving wheat yield and grain quality.


Subject(s)
Soil , Zinc , Zinc/analysis , Triticum , Zinc Sulfate/metabolism , Edible Grain/chemistry
11.
Hortic Res ; 10(7): uhad102, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37786731

ABSTRACT

Phenolics are vital for the adaptation of plants to terrestrial habitats and for species diversity. Phenoloxidases (catechol oxidases, COs, and laccases, LACs) are responsible for the oxidation and polymerization of phenolics. However, their origin, evolution, and differential roles during plant development and land colonization are unclear. We performed the phylogeny, domain, amino acids, compositional biases, and intron analyses to clarify the origin and evolution of COs and LACs, and analysed the structure, selective pressure, and chloroplast targeting to understand the species-dependent distribution of COs. We found that Streptophyta COs were not homologous to the Chlorophyta tyrosinases (TYRs), and might have been acquired by horizontal gene transfer from bacteria. COs expanded in bryophytes. Structural-functionality and selective pressure were partially responsible for the species-dependent retention of COs in embryophytes. LACs emerged in Zygnemaphyceae, having evolved from ascorbate oxidases (AAOs), and prevailed in the vascular plants and strongly expanded in seed plants. COs and LACs coevolved with the phenolic metabolism pathway genes. These results suggested that TYRs and AAOs were the first-stage phenoloxidases in Chlorophyta. COs might be the second key for the early land colonization. LACs were the third one (dominating in the vascular plants) and might be advantageous for diversified phenol substrates and the erect growth of plants. This work provided new insights into how phenoloxidases evolved and were devoted to plant evolution.

13.
Plant Physiol Biochem ; 201: 107914, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37515893

ABSTRACT

The present study was conducted to determine the effect of indole acetic acid (IAA) and Citrate Capped Silver Nanoparticles (Cit-AgNPs) on various attributes of maize under induced salinity stress. Seeds of the said variety were collected from Cereal Crop Research Institute (CCRI) Pirsabaq, Nowshera, sterilized and sown in earthen pots filled with 2 kg silt and soil (1:2) in triplicates in the green house of the Botany Department, University of Peshawar. Nanoparticles were analyzed by scanning electron microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDX), Thermo-gravimetric analysis (TGA) and Differential thermal analysis (DTA). Results of SEM revealed spherical morphology of Cit-AgNPs while EDX showed various elemental composition. TGA showed dominant weight loss up to 300 °C while the DTA showed major exothermic peaks at 420 °C. High Salinity concentration (80 mM) imposed significant detrimental impacts by reducing the agronomic attributes, photosynthetic pigments, osmolytes and antioxidant enzymes, which was remarkably ameliorated by the foliar application of Cit-AgNPs and IAA. Agronomic attributes including leaf, root and shoot fresh and dry weight was improved by 52-74%, 43-69% and 36-79% in individual as well as combined treatments of IAA and NPs. Photosynthetic pigments were amplified by 35-63%, total osmolytes were augmented by 39-68% and antioxidant enzymes including SOD and POD were boosted by 42-57% and 37-62% respectively, in combined as well as individual application. Conclusively, Cit-AgNPs are considered as salt mitigating entities that enhance the tolerance level of crop plants along with IAA, which may be beneficial for the plants growing in saline stressed environment.


Subject(s)
Antioxidants , Metal Nanoparticles , Antioxidants/chemistry , Metal Nanoparticles/chemistry , Citric Acid , Silver/pharmacology , Silver/chemistry , Zea mays , Salt Stress
14.
Anal Methods ; 15(24): 2971-2978, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37309647

ABSTRACT

Cholesterol (CHO) in human blood is one of the most frequently and crucially quantified substances in diagnostic laboratories. However, visual and portable point of care testing (POCT) methods have been rarely developed for the bioassay of CHO in blood samples. Here, we developed an electrophoresis titration (ET) model, a chip device of ∼60 grams, and a quantification method for the POCT of CHO in blood serum based on a moving reaction boundary (MRB). In this model, the selective enzymatic reaction is integrated with an ET chip for visual and portable quantification. At first, CHO reacted with cholesterol oxidase (CHOx) in the anode well, producing H2O2 and cholest-4-en-3-one in the solution. H2O2 further oxidized the colorless and chargeless leucocrystal violet (LCV) dye into violet colored positively charged crystal violet (CV+) and, under the influence of the electric field, the CV+ migrates in the ET channels and is titrated by the alkali of sodium hydroxide immobilized in the ET channels. The length covered by the MRB was measured as a function of the CHO content. The relevant experiments validated the feasibility of the model and method. Furthermore, the experiments revealed the high selectivity, portability, and visuality of the ET-MRB model, device, and method. Finally, the experiments showed a fair sensitivity of LOD of 5 µM, good linearity of 10-1000 µM (r2 = 0.9919), fair stability (intra-day RSD of less than 5.09% and an inter-day RSD of less than 6.36%), and high recovery (99.4-105%). All the data and results indicate the potential of the ET-MRB model, chip device, and method for POCT of CHO in human blood samples.


Subject(s)
Hydrogen Peroxide , Serum , Humans , Hydrogen Peroxide/chemistry , Electrophoresis/methods , Cholesterol Oxidase , Point-of-Care Testing
15.
Foods ; 12(23)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38231601

ABSTRACT

The demand for ethical foods is rising, with halal foods playing a significant role in this trend. However, halal standards vary globally, which can have substantial implications. Multiple Halal Certification Bodies (HCBs) can approve food products but they often prioritize national regulations over international alignment. To explore the similarities and differences in halal standards, we conducted a critical analysis of various standards, including Pakistan's halal standards, the Standards and Metrology Institute for Islamic Countries, Majlis Ugama Islam Singapore, Majelis Ulama Indonesia, GCC Standardization Organization, Jabatan Kemajuan Islam Malaysia, ASEAN General Guideline, and the halal standards of Thailand, Iran, and Brunei, through a literature survey. While some commonalities exist, differences stemming from various Islamic schools of thought pose challenges for regulators, consumers, and food producers. Controversial issues include stunning, slaughtering, aquatic animals, insects, and labeling requirements. For example, all standards except the GSO allow non-Muslim slaughterers, and stunning is permitted in all standards except those of Pakistan. These disparities underscore the need for standardization and harmonization in the halal food industry to meet the growing demand for ethical foods.

16.
Front Plant Sci ; 13: 994785, 2022.
Article in English | MEDLINE | ID: mdl-36388512

ABSTRACT

In recent years, heavy metals-induced soil pollution has increased due to the widespread usage of chromium (Cr) in chemical industries. The release of Cr into the environment has reached its peak causing hazardous environmental pollution. Heavy metal-induced soil pollution is one of the most important abiotic stress affecting the dynamic stages of plant growth and development. In severe cases, it can kill the plants and their derivatives and thereby pose a potential threat to human food safety. The chromium ion effect on plants varies and depends upon its severity range. It mainly impacts the numerous regular activities of the plant's life cycle, by hindering the germination of plant seeds, inhibiting the growth of hypocotyl and epicotyl parts of the plants, as well as damaging the chloroplast cell structures. In this review article, we tried to summarize the possible effects of chromium-induced stress on plant growth, developmental physiology, biochemistry, and molecular regulation and provided the important theoretical basis for selecting remedial plants in chromium-induced contaminated soils, breeding of low toxicity tolerant varieties, and analyzing the mechanism of plant resistance mechanisms in response to heavy metal stress.

17.
Front Plant Sci ; 13: 972635, 2022.
Article in English | MEDLINE | ID: mdl-36061778

ABSTRACT

Abiotic stress is an important factor affecting the normal growth and development of plants and crop yield. To reduce the impact of abiotic adversity on cotton growth and development, the material basis of cotton resistance and its physiological functions are analyzed at the molecular level. At the same time, the use of genetic engineering methods to recombine resistance genes has become a hot spot in cotton resistance research. This paper provides an overviews of the resistance mechanism of cotton against the threat of non-biological adversity, as well as the research progress of osmoregulation-related genes, protein-acting genes, and transcription regulatory factor genes in recent years, and outlines the explored gene resources in cotton resistance genetic engineering, with the aim to provide ideas and reference bases for future research on cotton resistance.

18.
Front Plant Sci ; 13: 959784, 2022.
Article in English | MEDLINE | ID: mdl-35937355

ABSTRACT

Yields of wheat crops that succeed rice paddy crops are generally low. To date, it has been unclear whether such low yields were due to rice paddies altering soil physical or mineral characteristics, or both. To investigate this quandary, we conducted field experiments in the Jianghan Plain to analyze differences in the spatial distribution of wheat roots between rice-wheat rotation (RW) and dryland-wheat rotations (DW) using a range of nitrogen treatments. Dryland wheat crops were preceded by either dryland soybean or corn in the prior summer. Biomass of wheat crops in RW systems was significantly lower than that of DW for all N fertilizer treatments, although optimal nitrogen management resulted in comparable wheat yields in both DW and RW. Soil saturated water capacity and non-capillary porosity were higher in DW than RW, whereas soil bulk density was higher in RW. Soil available nitrogen and organic matter were higher in DW than RW irrespective of N application, while soil available P and K were higher under RW both at anthesis and post-harvest stages. At anthesis, root length percentage (RLP) was more concentrated in surface layers (0-20 cm) in RW, whereas at 20-40 cm and 40-60 cm, RLP was higher in DW than RW for all N treatments. At maturity, RLP were ranked 0-20 > 20-40 > 40-60 cm under both cropping systems irrespective of N fertilization. Root length percentage and soil chemical properties at 0-20 cm were positively correlated (r = 0.79 at anthesis, r = 0.68 at post-harvest) with soil available P, while available N (r = -0.59) and soil organic matter (r = -0.39) were negatively correlated with RLP at anthesis. Nitrogen applied at 180 kg ha-1 in three unform amounts of 60 kg N ha-1 at sowing, wintering and jointing resulted in higher yields than other treatments for both cropping systems. Overall, our results suggest that flooding of rice paddies increased bulk density and reduced available nitrogen, inhibiting the growth and yield of subsequent wheat crops relative to rainfed corn or soybean crops.

19.
Front Plant Sci ; 13: 948736, 2022.
Article in English | MEDLINE | ID: mdl-35979075

ABSTRACT

The development of food and forage crops that flourish under saline conditions may be a prospective avenue for mitigating the impacts of climate change, both allowing biomass production under conditions of water-deficit and potentially expanding land-use to hitherto non-arable zones. Here, we examine responses of the native halophytic shrub Atriplex leucoclada to salt and drought stress using a factorial design, with four levels of salinity and four drought intensities under the arid conditions. A. leucoclada plants exhibited morphological and physiological adaptation to salt and water stress which had little effect on survival or growth. Under low salinity stress, water stress decreased the root length of A. leucoclada; in contrast, under highly saline conditions root length increased. Plant tissue total nitrogen, phosphorus and potassium content decreased with increasing water stress under low salinity. As salt stress increased, detrimental effects of water deficit diminished. We found that both salt and water stress had increased Na+ and Cl- uptake, with both stresses having an additive and beneficial role in increasing ABA and proline content. We conclude that A. leucoclada accumulates high salt concentrations in its cellular vacuoles as a salinity resistance mechanism; this salt accumulation then becomes conducive to mitigation of water stress. Application of these mechanisms to other crops may improve tolerance and producitivity under salt and water stress, potentially improving food security.

20.
Front Plant Sci ; 13: 965649, 2022.
Article in English | MEDLINE | ID: mdl-35874011

ABSTRACT

Understanding the selenium tolerance of different sweet potato [Dioscorea esculenta (Lour.) Burkill] is essential for simultaneously for breeding of new selenium-tolerant varieties and improving the selenium content in sweet potato. Therefore, a greenhouse experiment was conducted from February to April 2022 to evaluate the effect of sweet potato cultivars and selenium (Na2SeO3) concentrations (0-40 mg/L) on plant growth, physiological activities and plant selenium content distribution. The results showed that when the selenium concentration was more than 3 mg/L, the plant growth was significantly affected and the plant height and root length were significantly different compared to the control. While the selenium concentration was 20 and 40 mg/L had the greatest effect on plant growth when the number of internodes and leaves of the plant decreased, the root system stopped growing and the number of internodes of the plant, the number of leaves and the dry-to-fresh weight ratio of the plant a very significant level compared to reached control. The relative amount of chlorophyll in leaves under treatment with a selenium concentration of 1 mg/L was increased, and the relative amount of chlorophyll in 3 mg/L leaves gradually increased with the increase in the selenium concentration. The values of the maximum photochemical efficiency PSII (fv/fm) and the potential activity of PSII (fv/fo) compared to the control under treatment with 40 mg/L selenium concentration and photosynthesis of plants was inhibited. The selenium content in root, stem and leaf increased with the increase in selenium concentration, and the distribution of selenium content in the plant was leaf

SELECTION OF CITATIONS
SEARCH DETAIL
...