Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 5998, 2019 04 12.
Article in English | MEDLINE | ID: mdl-30979952

ABSTRACT

Many pregnant women and prematurely born infants require medication for clinical conditions including cancer, cardiac defects and psychiatric disorders. In adults drug transfer from blood into brain is mostly restricted by efflux mechanisms (ATP-binding cassette, ABC transporters). These mechanisms have been little studied during brain development. Here expression of eight ABC transporters (abcb1a, abcb1b, abcg2, abcc1, abcc2, abcc3, abcc4, abcc5) and activity of conjugating enzyme glutathione-s-transferase (GST) were measured in livers, brain cortices (blood-brain-barrier) and choroid plexuses (blood-cerebrospinal fluid, CSF, barrier) during postnatal rat development. Controls were compared to animals chronically injected (4 days, 200 mg/kg/day) with known abcb1a inducer diallyl sulfide (DAS). Results reveal both tissue- and age-dependent regulation. In liver abcb1a and abcc3 were up-regulated at all ages. In cortex abcb1a/b, abcg2 and abcc4/abcc5 were up-regulated in adults only, while in choroid plexus abcb1a and abcc2 were up-regulated only at P14. DAS treatment increased GST activity in livers, but not in cortex or choroid plexuses. Immunocytochemistry of ABC transporters at the CSF-brain interface showed that PGP and BCRP predominated in neuroepithelium while MRP2/4/5 were prominent in adult ependyma. These results indicate an age-related capacity of brain barriers to dynamically regulate their defence mechanisms when chronically challenged by xenobiotic compounds.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Allyl Compounds/toxicity , Brain/drug effects , Brain/growth & development , Gene Expression Regulation, Developmental/drug effects , Sulfides/toxicity , Animals , Brain/metabolism , Glutathione Transferase/genetics , Rats , Rats, Sprague-Dawley , Time Factors
2.
Am J Physiol Cell Physiol ; 315(4): C445-C456, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29949405

ABSTRACT

Hydrogen peroxide, released at low physiological concentration, is involved in different cell signaling pathways during brain development. When released at supraphysiological concentrations in brain fluids following an inflammatory, hypoxic, or toxic stress, it can initiate lipid peroxidation, protein, and nucleic acid damage and contribute to long-term neurological impairment associated with perinatal diseases. We found high glutathione peroxidase and glutathione reductase enzymatic activities in both lateral and fourth ventricle choroid plexus tissue isolated from developing rats, in comparison to the cerebral cortex and liver. Consistent with these, a high protein expression of glutathione peroxidases 1 and 4 was observed in choroid plexus epithelial cells, which form the blood-cerebrospinal fluid barrier. Live choroid plexuses isolated from newborn rats were highly efficient in detoxifying H2O2 from mock cerebrospinal fluid, illustrating the capacity of the choroid plexuses to control H2O2 concentration in the ventricular system of the brain. We used a differentiated cellular model of the blood-cerebrospinal fluid barrier coupled to kinetic and inhibition analyses to show that glutathione peroxidases are more potent than catalase to detoxify extracellular H2O2 at concentrations up to 250 µM. The choroidal cells also formed an enzymatic barrier preventing blood-borne hydroperoxides to reach the cerebrospinal fluid. These data point out the choroid plexuses as key structures in the control of hydroperoxide levels in the cerebral fluid environment during development, at a time when the protective glial cell network is still immature. Glutathione peroxidases are the main effectors of this choroidal hydroperoxide inactivation.


Subject(s)
Brain/metabolism , Cerebrospinal Fluid/metabolism , Choroid Plexus/metabolism , Hydrogen Peroxide/metabolism , Animals , Blood-Brain Barrier/metabolism , Epithelial Cells/metabolism , Female , Male , Rats , Rats, Sprague-Dawley
3.
J Neurosci ; 38(14): 3466-3479, 2018 04 04.
Article in English | MEDLINE | ID: mdl-29507144

ABSTRACT

Exposure of the developing brain to toxins, drugs, or deleterious endogenous compounds during the perinatal period can trigger alterations in cell division, migration, differentiation, and synaptogenesis, leading to lifelong neurological impairment. The brain is protected by cellular barriers acting through multiple mechanisms, some of which are still poorly explored. We used a combination of enzymatic assays, live tissue fluorescence microscopy, and an in vitro cellular model of the blood-CSF barrier to investigate an enzymatic detoxification pathway in the developing male and female rat brain. We show that during the early postnatal period the choroid plexus epithelium forming the blood-CSF barrier and the ependymal cell layer bordering the ventricles harbor a high detoxifying capacity that involves glutathione S-transferases. Using a functional knock-down rat model for choroidal glutathione conjugation, we demonstrate that already in neonates, this metabolic pathway efficiently prevents the penetration of blood-borne reactive compounds into CSF. The versatility of the protective mechanism results from the multiplicity of the glutathione S-transferase isoenzymes, which are differently expressed between the choroidal epithelium and the ependyma. The various isoenzymes display differential substrate specificities, which greatly widen the spectrum of molecules that can be inactivated by this pathway. In conclusion, the blood-CSF barrier and the ependyma are identified as key cellular structures in the CNS to protect the brain fluid environment from different chemical classes of potentially toxic compounds during the postnatal period. This metabolic neuroprotective function of brain interfaces ought to compensate for the liver postnatal immaturity.SIGNIFICANCE STATEMENT Brain homeostasis requires a stable and controlled internal environment. Defective brain protection during the perinatal period can lead to lifelong neurological impairment. We demonstrate that the choroid plexus forming the blood-CSF barrier is a key player in the protection of the developing brain. Glutathione-dependent enzymatic metabolism in the choroidal epithelium inactivates a broad spectrum of noxious compounds, efficiently preventing their penetration into the CSF. A second line of detoxification is located in the ependyma separating the CSF from brain tissue. Our study reveals a novel facet of the mechanisms by which the brain is protected at a period of high vulnerability, at a time when the astrocytic network is still immature and liver xenobiotic metabolism is limited.


Subject(s)
Blood-Brain Barrier/metabolism , Glutathione Transferase/metabolism , Glutathione/metabolism , Animals , Blood-Brain Barrier/growth & development , Choroid Plexus/growth & development , Choroid Plexus/metabolism , Ependyma/growth & development , Ependyma/metabolism , Female , Free Radicals/blood , Free Radicals/cerebrospinal fluid , Glutathione/blood , Glutathione/cerebrospinal fluid , Male , Rats , Rats, Sprague-Dawley
4.
Pharm Res ; 35(4): 84, 2018 Mar 07.
Article in English | MEDLINE | ID: mdl-29516182

ABSTRACT

Drug bioavailability to the developing brain is a major concern in the treatment of neonates and infants as well as pregnant and breast-feeding women. Central adverse drug reactions can have dramatic consequences for brain development, leading to major neurological impairment. Factors setting the cerebral bioavailability of drugs include protein-unbound drug concentration in plasma, local cerebral blood flow, permeability across blood-brain interfaces, binding to neural cells, volume of cerebral fluid compartments, and cerebrospinal fluid secretion rate. Most of these factors change during development, which will affect cerebral drug concentrations. Regarding the impact of blood-brain interfaces, the blood-brain barrier located at the cerebral endothelium and the blood-cerebrospinal fluid barrier located at the choroid plexus epithelium both display a tight phenotype early on in embryos. However, the developmental regulation of some multispecific efflux transporters that also limit the entry of numerous drugs into the brain through barrier cells is expected to favor drug penetration in the neonatal brain. Finally, drug cerebral bioavailability is likely to be affected following perinatal injuries that alter blood-brain interface properties. A thorough investigation of these mechanisms is mandatory for a better risk assessment of drug treatments in pregnant or breast-feeding women, and in neonate and pediatric patients.


Subject(s)
Abnormalities, Drug-Induced/prevention & control , Brain/drug effects , Breast Feeding , Maternal-Fetal Exchange/drug effects , Pregnancy Complications/drug therapy , Abnormalities, Drug-Induced/etiology , Biological Availability , Brain/embryology , Brain/growth & development , Brain/metabolism , Child Development/drug effects , Female , Fetal Development/drug effects , Humans , Infant , Infant, Newborn , Pregnancy , Risk Assessment , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...