Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Front Neuroanat ; 15: 678385, 2021.
Article in English | MEDLINE | ID: mdl-34135738

ABSTRACT

Mammals are born on a precocial-altricial continuum. Altricial species produce helpless neonates with closed distant organs incapable of locomotion, whereas precocial species give birth to well-developed young that possess sophisticated sensory and locomotor capabilities. Previous studies suggest that distinct patterns of cortex development differ between precocial and altricial species. This study compares patterns of neocortex neurogenesis and maturation in the precocial guinea pig and altricial dwarf rabbit, both belonging to the taxon of Glires. We show that the principal order of neurodevelopmental events is preserved in the neocortex of both species. Moreover, we show that neurogenesis starts at a later postconceptional day and takes longer in absolute gestational days in the precocial than the altricial neocortex. Intriguingly, our data indicate that the dwarf rabbit neocortex contains a higher abundance of highly proliferative basal progenitors than the guinea pig, which might underlie its higher encephalization quotient, demonstrating that the amount of neuron production is determined by complex regulation of multiple factors. Furthermore, we show that the guinea pig neocortex exhibits a higher maturation status at birth, thus providing evidence for the notions that precocial species might have acquired the morphological machinery required to attain their high functional state at birth and that brain expansion in the precocial newborn is mainly due to prenatally initiating processes of gliogenesis and neuron differentiation instead of increased neurogenesis. Together, this study reveals important insights into the timing and cellular differences that regulate mammalian brain growth and maturation and provides a better understanding of the evolution of mammalian altriciality and presociality.

2.
Cereb Cortex ; 28(1): 145-157, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29253253

ABSTRACT

A hallmark of mammalian brain evolution is the emergence of the neocortex, which has expanded in all mammalian infraclasses (Eutheria, Marsupialia, Monotremata). In eutherians, neocortical neurons derive from distinct neural stem and progenitor cells (NPCs). However, precise data on the presence and abundance of the NPCs, especially of basal radial glia (bRG), in the neocortex of marsupials are lacking. This study characterized and quantified the NPCs in the developing neocortex of a marsupial, the tammar wallaby (Macropus eugenii). Our data demonstrate that its neocortex is characterized by high NPC diversity. Importantly, we show that bRG exist at high relative abundance in the tammar indicating that this cell type is not specific to the eutherian neocortex and that similar mechanisms may underlie the formation of an expanded neocortex in eutherian and marsupial mammals. We also show that bRG are likely to have been present in the therian ancestor, so did not emerge independently in the eutherian and marsupial lineages. Moreover, our data support the concept that changes in multiple parameters contribute to neocortex expansion and demonstrate the importance of bRG and other NPCs for the development and expansion of the mammalian neocortex.


Subject(s)
Biological Evolution , Ependymoglial Cells/cytology , Macropodidae/anatomy & histology , Neocortex/cytology , Animals , Cell Division/physiology , Cerebral Ventricles , Ependymoglial Cells/metabolism , Immunohistochemistry , Macropodidae/growth & development , Macropodidae/metabolism , Neocortex/growth & development , Neocortex/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neurogenesis , PAX6 Transcription Factor/metabolism , Phylogeny , Sheep, Domestic/anatomy & histology , Sheep, Domestic/growth & development , Sheep, Domestic/metabolism , Species Specificity , T-Box Domain Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL