Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Cancer Med ; 13(9): e7207, 2024 May.
Article in English | MEDLINE | ID: mdl-38686627

ABSTRACT

BACKGROUND: Most high-risk neuroblastoma patients who relapse succumb to disease despite the existing therapy. We recently reported increased event-free and overall survival in neuroblastoma patients receiving difluoromethylornithine (DFMO) during maintenance therapy. The effect of DFMO on cellular processes associated with neuroblastoma tumorigenesis needs further elucidation. Previous studies have shown cytotoxicity with IC50 values >5-15 mM, these doses are physiologically unattainable in patients, prompting further mechanistic studies at therapeutic doses. METHODS: We characterized the effect of DFMO on cell viability, cell cycle, apoptosis, neurosphere formation, and protein expression in vitro using five established neuroblastoma cell lines (BE2C, CHLA-90, SHSY5Y, SMS-KCNR, and NGP) at clinically relevant doses of 0, 50, 100, 500, 1000, and 2500 µM. Limiting Dilution studies of tumor formation in murine models were performed. Statistical analysis was done using GraphPad and the level of significance set at p = 0.05. RESULTS: There was not a significant loss of cell viability or gain of apoptotic activity in the in vitro assays (p > 0.05). DFMO treatment initiated G1 to S phase cell cycle arrest. There was a dose-dependent decrease in frequency and size of neurospheres and a dose-dependent increase in beta-galactosidase activity in all cell lines. Tumor formation was decreased in xenografts both with DFMO-pretreated cells and in mice treated with DFMO. CONCLUSION: DFMO treatment is cytostatic at physiologically relevant doses and inhibits tumor initiation and progression in mice. This study suggests that DFMO, inhibits neuroblastoma by targeting cellular processes integral to neuroblastoma tumorigenesis at clinically relevant doses.


Subject(s)
Apoptosis , Cell Survival , Eflornithine , Neuroblastoma , Xenograft Model Antitumor Assays , Neuroblastoma/drug therapy , Neuroblastoma/pathology , Neuroblastoma/metabolism , Humans , Animals , Cell Line, Tumor , Mice , Apoptosis/drug effects , Eflornithine/pharmacology , Eflornithine/therapeutic use , Cell Survival/drug effects , Carcinogenesis/drug effects , Cell Cycle/drug effects , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Female
2.
J Clin Oncol ; 42(1): 90-102, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37883734

ABSTRACT

PURPOSE: Long-term survival in high-risk neuroblastoma (HRNB) is approximately 50%, with mortality primarily driven by relapse. Eflornithine (DFMO) to reduce risk of relapse after completion of immunotherapy was investigated previously in a single-arm, phase II study (NMTRC003B; ClinicalTrials.gov identifier: NCT02395666) that suggested improved event-free survival (EFS) and overall survival (OS) compared with historical rates in a phase III trial (Children Oncology Group ANBL0032; ClinicalTrials.gov identifier: NCT00026312). Using patient-level data from ANBL0032 as an external control, we present new analyses to further evaluate DFMO as HRNB postimmunotherapy maintenance. PATIENTS AND METHODS: NMTRC003B (2012-2016) enrolled patients with HRNB (N = 141) after standard up-front or refractory/relapse treatment who received up to 2 years of continuous treatment with oral DFMO (750 ± 250 mg/m2 twice a day). ANBL0032 (2001-2015) enrolled patients with HRNB postconsolidation, 1,328 of whom were assigned to dinutuximab (ch.14.18) treatment. Selection rules identified 92 NMTRC003B patients who participated in (n = 87) or received up-front treatment consistent with (n = 5) ANBL0032 (the DFMO/treated group) and 852 patients from ANBL0032 who could have been eligible for NMTRC003B after immunotherapy, but did not enroll (the NO-DFMO/control group). The median follow-up time for DFMO/treated patients was 6.1 years (IQR, 5.2-7.2) versus 5.0 years (IQR, 3.5-7.0) for NO-DFMO/control patients. Kaplan-Meier and Cox regression compared EFS and OS for overall groups, 3:1 (NO-DFMO:DFMO) propensity score-matched cohorts balanced on 11 baseline demographic and disease characteristics with exact matching on MYCN, and additional sensitivity analyses. RESULTS: DFMO after completion of immunotherapy was associated with improved EFS (hazard ratio [HR], 0.50 [95% CI, 0.29 to 0.84]; P = .008) and OS (HR, 0.38 [95% CI, 0.19 to 0.76]; P = .007). The results were confirmed with propensity score-matched cohorts and sensitivity analyses. CONCLUSION: The externally controlled analyses presented show a relapse risk reduction in patients with HRNB treated with postimmunotherapy DFMO.


Subject(s)
Eflornithine , Neuroblastoma , Child , Humans , Eflornithine/adverse effects , Propensity Score , Neoplasm Recurrence, Local/drug therapy , Neuroblastoma/drug therapy , Recurrence , Disease-Free Survival
3.
Int J Cancer ; 153(5): 1026-1034, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37246577

ABSTRACT

Children with relapsed/refractory (R/R) neuroblastoma (NB) and medulloblastoma (MB) have poor outcomes. We evaluated the efficacy of nifurtimox (Nfx) in a clinical trial for children with R/R NB and MB. Subjects were divided into three strata: first relapse NB, multiply R/R NB, and R/R MB. All patients received Nfx (30 mg/kg/day divided TID daily), Topotecan (0.75 mg/m2 /dose, days 1-5) and Cyclophosphamide (250 mg/m2 /dose, days 1-5) every 3 weeks. Response was assessed after every two courses using International Neuroblastoma Response Criteria and Response Evaluation Criteria in Solid Tumors (RECIST) criteria. One hundred and twelve eligible patients were enrolled with 110 evaluable for safety and 76 evaluable for response. In stratum 1, there was a 53.9% response rate (CR + PR), and a 69.3% total benefit rate (CR + PR + SD), with an average time on therapy of 165.2 days. In stratum 2, there was a 16.3% response rate, and a 72.1% total benefit rate, and an average time on study of 158.4 days. In stratum 3, there was a 20% response rate and a 65% total benefit rate, an average time on therapy of 105.0 days. The most common side effects included bone marrow suppression and reversible neurologic complications. The combination of Nfx, topotecan and cyclophosphamide was tolerated, and the objective response rate plus SD of 69.8% in these heavily pretreated populations suggests that this combination is an effective option for patients with R/R NB and MB. Although few objective responses were observed, the high percentage of stabilization of disease and prolonged response rate in patients with multiply relapsed disease shows this combination therapy warrants further testing.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Neuroblastoma , Child , Humans , Topotecan/adverse effects , Nifurtimox/therapeutic use , Medulloblastoma/drug therapy , Neoplasm Recurrence, Local/pathology , Neuroblastoma/drug therapy , Neuroblastoma/etiology , Cyclophosphamide , Antineoplastic Combined Chemotherapy Protocols/adverse effects
4.
Cancer Rep (Hoboken) ; 5(11): e1616, 2022 11.
Article in English | MEDLINE | ID: mdl-35355452

ABSTRACT

BACKGROUND: Survival for patients with high-risk neuroblastoma (HRNB) remains poor despite aggressive multimodal therapies. AIMS: To study the feasibility and safety of incorporating a genomic-based targeted agent to induction therapy for HRNB as well as the feasibility and safety of adding difluoromethylornithine (DFMO) to anti-GD2 immunotherapy. METHODS: Twenty newly diagnosed HRNB patients were treated on this multicenter pilot trial. Molecular tumor boards selected one of six targeted agents based on tumor-normal whole exome sequencing and tumor RNA-sequencing results. Treatment followed standard upfront HRNB chemotherapy with the addition of the selected targeted agent to cycles 3-6 of induction. Following consolidation, DFMO (750 mg/m2 twice daily) was added to maintenance with dinutuximab and isotretinoin, followed by continuation of DFMO alone for 2 years. DNA methylation analysis was performed retrospectively and compared to RNA expression. RESULTS: Of the 20 subjects enrolled, 19 started targeted therapy during cycle 3 and 1 started during cycle 5. Eighty-five percent of subjects met feasibility criteria (receiving 75% of targeted agent doses). Addition of targeted agents did not result in toxicities requiring dose reduction of chemotherapy or permanent discontinuation of targeted agent. Following standard consolidation, 15 subjects continued onto immunotherapy with DFMO. This combination was well-tolerated and resulted in no unexpected adverse events related to DFMO. CONCLUSION: This study demonstrates the safety and feasibility of adding targeted agents to standard induction therapy and adding DFMO to immunotherapy for HRNB. This treatment regimen has been expanded to a Phase II trial to evaluate efficacy.


Subject(s)
Antineoplastic Agents , Neuroblastoma , Humans , Eflornithine/adverse effects , Pilot Projects , Induction Chemotherapy , Retrospective Studies , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Immunotherapy , Antineoplastic Agents/therapeutic use , Immunologic Factors , Genomics , RNA/therapeutic use
5.
Cancer Res ; 81(23): 5818-5832, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34610968

ABSTRACT

Children with treatment-refractory or relapsed (R/R) tumors face poor prognoses. As the genomic underpinnings driving R/R disease are not well defined, we describe here the genomic and transcriptomic landscapes of R/R solid tumors from 202 patients enrolled in Beat Childhood Cancer Consortium clinical trials. Tumor mutational burden (TMB) was elevated relative to untreated tumors at diagnosis, with one-third of tumors classified as having a pediatric high TMB. Prior chemotherapy exposure influenced the mutational landscape of these R/R tumors, with more than 40% of tumors demonstrating mutational signatures associated with platinum or temozolomide chemotherapy and two tumors showing treatment-associated hypermutation. Immunogenomic profiling found a heterogenous pattern of neoantigen and MHC class I expression and a general absence of immune infiltration. Transcriptional analysis and functional gene set enrichment analysis identified cross-pathology clusters associated with development, immune signaling, and cellular signaling pathways. While the landscapes of these R/R tumors reflected those of their corresponding untreated tumors at diagnosis, important exceptions were observed, suggestive of tumor evolution, treatment resistance mechanisms, and mutagenic etiologies of treatment. SIGNIFICANCE: Tumor heterogeneity, chemotherapy exposure, and tumor evolution contribute to the molecular profiles and increased mutational burden that occur in treatment-refractory and relapsed childhood solid tumors.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/genetics , Drug Resistance, Neoplasm , Immune Evasion , Mutation , Neoplasm Recurrence, Local/pathology , Neoplasms/pathology , Adolescent , Adult , Child , Child, Preschool , Female , Follow-Up Studies , Gene Expression Regulation, Neoplastic , Humans , Infant , Longitudinal Studies , Male , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/immunology , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/immunology , Prognosis , Survival Rate , Transcriptome , Young Adult
6.
Int J Cancer ; 147(11): 3152-3159, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32391579

ABSTRACT

Neuroblastoma is a sympathetic nervous system tumor, primarily presenting in children under 6 years of age. The long-term prognosis for patients with high-risk neuroblastoma (HRNB) remains poor despite aggressive multimodal therapy. This report provides an update to a phase II trial evaluating DFMO as maintenance therapy in HRNB. Event-free survival (EFS) and overall survival (OS) of 81 subjects with HRNB treated with standard COG induction, consolidation and immunotherapy followed by 2 years of DFMO on the NMTRC003/003b Phase II trial were compared to a historical cohort of 76 HRNB patients treated at Beat Childhood Cancer Research Consortium (BCC) hospitals who were disease-free after completion of standard upfront therapy and did not receive DFMO. The 2- and 5-year EFS were 86.4% [95% confidence interval (CI) 79.3%-94.2%] and 85.2% [77.8%-93.3%] for the NMTRC003/003b subset vs 78.3% [69.5%-88.3%] and 65.6% [55.5%-77.5%] for the historical control group. The 2- and 5-year OS were 98.8% [96.4-100%] and 95.1% [90.5%-99.9%] vs 94.4% [89.3%-99.9%] and 81.6% [73.0%-91.2%], respectively. DFMO maintenance for HRNB after completion of standard of care therapy was associated with improved EFS and OS relative to historical controls treated at the same institutions. These results support additional investigations into the potential role of DFMO in preventing relapse in HRNB.


Subject(s)
Eflornithine/administration & dosage , Neuroblastoma/drug therapy , Child, Preschool , Disease-Free Survival , Eflornithine/therapeutic use , Female , Humans , Maintenance Chemotherapy , Male , Prognosis , Standard of Care , Treatment Outcome
7.
PLoS One ; 10(5): e0127246, 2015.
Article in English | MEDLINE | ID: mdl-26018967

ABSTRACT

BACKGROUND: Neuroblastoma (NB) is the most common cancer in infancy and most frequent cause of death from extracranial solid tumors in children. Ornithine decarboxylase (ODC) expression is an independent indicator of poor prognosis in NB patients. This study investigated safety, response, pharmacokinetics, genetic and metabolic factors associated with ODC in a clinical trial of the ODC inhibitor difluoromethylornithine (DFMO) ± etoposide for patients with relapsed or refractory NB. METHODS AND FINDINGS: Twenty-one patients participated in a phase I study of daily oral DFMO alone for three weeks, followed by additional three-week cycles of DFMO plus daily oral etoposide. No dose limiting toxicities (DLTs) were identified in patients taking doses of DFMO between 500-1500 mg/m2 orally twice a day. DFMO pharmacokinetics, single nucleotide polymorphisms (SNPs) in the ODC gene and urinary levels of substrates for the tissue polyamine exporter were measured. Urinary polyamine levels varied among patients at baseline. Patients with the minor T-allele at rs2302616 of the ODC gene had higher baseline levels (p=0.02) of, and larger decreases in, total urinary polyamines during the first cycle of DFMO therapy (p=0.003) and had median progression free survival (PFS) that was over three times longer, compared to patients with the major G allele at this locus although this last result was not statistically significant (p=0.07). Six of 18 evaluable patients were progression free during the trial period with three patients continuing progression free at 663, 1559 and 1573 days after initiating treatment. Median progression-free survival was less among patients having increased urinary polyamines, especially diacetylspermine, although this result was not statistically significant (p=0.056). CONCLUSIONS: DFMO doses of 500-1500 mg/m2/day are safe and well tolerated in children with relapsed NB. Children with the minor T allele at rs2302616 of the ODC gene with relapsed or refractory NB had higher levels of urinary polyamine markers and responded better to therapy containing DFMO, compared to those with the major G allele at this locus. These findings suggest that this patient subset may display dependence on polyamines and be uniquely susceptible to therapies targeting this pathway. TRIAL REGISTRATION: Clinicaltrials.gov NCT#01059071.


Subject(s)
Eflornithine/pharmacology , Neuroblastoma/drug therapy , Ornithine Decarboxylase Inhibitors/pharmacology , Phenotype , Polyamines/metabolism , Adolescent , Child , Child, Preschool , Eflornithine/adverse effects , Eflornithine/pharmacokinetics , Eflornithine/therapeutic use , Etoposide/adverse effects , Etoposide/pharmacology , Etoposide/therapeutic use , Female , Humans , Infant , Male , Neuroblastoma/enzymology , Neuroblastoma/genetics , Neuroblastoma/urine , Ornithine Decarboxylase/metabolism , Ornithine Decarboxylase Inhibitors/adverse effects , Ornithine Decarboxylase Inhibitors/pharmacokinetics , Ornithine Decarboxylase Inhibitors/therapeutic use , Polyamines/urine , Recurrence , Safety , Treatment Outcome
8.
Cancer Med ; 4(6): 871-86, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25720842

ABSTRACT

The primary objective of the study was to evaluate the feasibility and safety of a process which would utilize genome-wide expression data from tumor biopsies to support individualized treatment decisions. Current treatment options for recurrent neuroblastoma are limited and ineffective, with a survival rate of <10%. Molecular profiling may provide data which will enable the practitioner to select the most appropriate therapeutic option for individual patients, thus improving outcomes. Sixteen patients with neuroblastoma were enrolled of which fourteen were eligible for this study. Feasibility was defined as completion of tumor biopsy, pathological evaluation, RNA quality control, gene expression profiling, bioinformatics analysis, generation of a drug prediction report, molecular tumor board yielding a treatment plan, independent medical monitor review, and treatment initiation within a 21 day period. All eligible biopsies passed histopathology and RNA quality control. Expression profiling by microarray and RNA sequencing were mutually validated. The average time from biopsy to report generation was 5.9 days and from biopsy to initiation of treatment was 12.4 days. No serious adverse events were observed and all adverse events were expected. Clinical benefit was seen in 64% of patients as stabilization of disease for at least one cycle of therapy or partial response. The overall response rate was 7% and the progression free survival was 59 days. This study demonstrates the feasibility and safety of performing real-time genomic profiling to guide treatment decision making for pediatric neuroblastoma patients.


Subject(s)
Molecular Targeted Therapy/methods , Neoplasm Recurrence, Local/therapy , Neuroblastoma/therapy , Adolescent , Antineoplastic Agents/therapeutic use , Child , Child, Preschool , Chronic Disease , Feasibility Studies , Female , Gene Expression Profiling/methods , Genome-Wide Association Study/methods , Humans , Male , Molecular Targeted Therapy/adverse effects , Patient Safety , Prospective Studies , RNA, Neoplasm/genetics , Sequence Analysis, RNA/methods , Time-to-Treatment , Treatment Outcome , Young Adult
9.
Int J Oncol ; 38(5): 1329-41, 2011 May.
Article in English | MEDLINE | ID: mdl-21399873

ABSTRACT

Medulloblastoma, a neuroectodermal tumor arising in the cerebellum, is the most common brain tumor found in children. We recently showed that nifurtimox induces production of reactive oxygen species (ROS) and subsequent apoptosis in neuroblastoma cells both in vitro and in vivo. Tetrathiomolybdate (TM) has been shown to decrease cell proliferation by inhibition of superoxide dismutase-1 (SOD1). Since both nifurtimox and TM increase ROS levels in cells, we investigated whether the combination of nifurtimox and TM would act synergistically in medulloblastoma cell lines (D283, DAOY). Genome-wide transcriptional analysis, by hybridizing RNA isolated from nifurtimox and TM alone or in combination treated and control cells (D283) on Affymetrix exon array gene chips was carried out to further confirm synergy. We show that nifurtimox and TM alone and in combination decreased cell viability and increased ROS levels synergistically. Examination of cell morphology following drug treatment (nifurtimox + TM) and detection of caspase-3 activation via Western blotting indicated that cell death was primarily due to apoptosis. Microarray data from cells treated with nifurtimox and TM validated the induction of oxidative stress, as many Nrf2 target genes (HMOX1, GCLM, SLC7A11 and SRXN1) (p<10(-5)) were upregulated. Other genes related to apoptosis, oxidative stress, DNA damage, protein folding and nucleosome formation were differentially involved in cells following treatment with nifurtimox + TM. Taken together, our results suggest nifurtimox and TM act synergistically in medulloblastoma cells in vitro, and that this combination warrants further studies as a new treatment for medulloblastoma.


Subject(s)
Cerebellar Neoplasms/drug therapy , Medulloblastoma/drug therapy , Molybdenum/pharmacology , Nifurtimox/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cerebellar Neoplasms/pathology , DNA Damage , Drug Synergism , Humans , Medulloblastoma/metabolism , Medulloblastoma/pathology , NF-E2-Related Factor 2/physiology , Reactive Oxygen Species/metabolism
10.
J Pediatr Hematol Oncol ; 33(1): 25-30, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21063221

ABSTRACT

The primary aim of this phase 1 study was to determine the maximum tolerated dose (MTD) and evaluate the safety of nifurtimox alone and in combination with cyclophosphamide and topotecan in multiple relapsed/refractory neuroblastoma pediatric patients. The secondary aim was to evaluate the pharmacokinetics of nifurtimox and the treatment response. To these ends, we performed a phase 1 dose escalation trial of daily oral nifurtimox with toxicity monitoring to determine the MTD, followed by 3 cycles of nifurtimox in combination with cyclophosphamide and topotecan. Samples were collected to determine the pharmacokinetic parameters maximum concentration, time at which maximum concentration is reached, and area under the curve between 0 and 8 hours. Treatment response was evaluated by radiographic and radionuclide (I-metaiodobenzylguanidine) imaging, measurement of urinary catecholamines, and clearance of bone marrow disease. We determined the MTD of nifurtimox to be 30 mg/kg/d. The non-dose-limiting toxicities were mainly nausea and neuropathy. The dose-limiting toxicities of 2 patients at 40 mg/kg/d were a grade 3 pulmonary hemorrhage and a grade 3 neuropathy (reversible). Overall, nifurtimox was well tolerated by pediatric patients at a dose of 30 mg/kg/d, and tumor responses were seen both as a single agent and in combination with chemotherapy. A Phase 2 study to determine the antitumor efficacy of nifurtimox is currently underway.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/adverse effects , Neuroblastoma/drug therapy , Nifurtimox/adverse effects , Adolescent , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Child , Child, Preschool , Cyclophosphamide/adverse effects , Cyclophosphamide/pharmacokinetics , Cyclophosphamide/therapeutic use , Female , Humans , Male , Maximum Tolerated Dose , Neuroblastoma/prevention & control , Nifurtimox/pharmacokinetics , Nifurtimox/therapeutic use , Recurrence , Topotecan/adverse effects , Topotecan/pharmacokinetics , Topotecan/therapeutic use , Treatment Outcome
11.
J Pediatr Hematol Oncol ; 31(3): 187-93, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19262245

ABSTRACT

Neuroblastoma is the most common extracranial solid tumor in children and, when disseminated, carries a poor prognosis. Even with aggressive combinations of chemotherapy, surgery, autologous bone marrow transplant, and radiation, long-term survival remains at 30% and new therapies are needed. Recently, a patient with neuroblastoma who acquired Chagas disease was treated with nifurtimox with subsequent reduction in tumor size. The effect of nifurtimox on the neuroblastoma cell lines CHLA-90, LA1-55n, LA-N2, SMS-KCNR, and SY5Y was examined. Nifurtimox decreased cell viability in a concentration-dependent manner. Cell morphology, terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling assay, and caspase-3 activation indicate that cell death was primarily due to apoptosis. Nifurtimox also suppressed basal and TrkB-mediated Akt phosphorylation, and the cytotoxicity of nifurtimox was attenuated by a tyrosine hydroxylase inhibitor (alpha-methyl-tyrosine). Nifurtimox killed catecholaminergic, but not cholinergic, autonomic neurons in culture. In vivo xenograft models showed inhibition of tumor growth with a histologic decrease in proliferation and increase in apoptosis. These results suggest that nifurtimox induces cell death in neuroblastoma. Therefore, further studies are warranted to develop nifurtimox as a promising new treatment for neuroblastoma.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Neuroblastoma/drug therapy , Nifurtimox/pharmacology , Animals , Blotting, Western , Caspase 3/drug effects , Catecholamines/metabolism , Cell Line, Tumor , DNA Fragmentation/drug effects , Female , Humans , In Situ Nick-End Labeling , Mice , Mice, Nude , Neurons/drug effects , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/drug effects , Reactive Oxygen Species , Xenograft Model Antitumor Assays
12.
J Pediatr Hematol Oncol ; 28(10): 693-5, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17023833

ABSTRACT

BACKGROUND: Chemotherapy-resistant neuroblastoma is a difficult disease to treat with poor survival. OBSERVATIONS: We treated a patient with neuroblastoma who had progressed on conventional chemotherapy. This 5-year-old girl with chemotherapy-resistant neuroblastoma developed Chagas disease at the start of salvage chemotherapy for which she was also started on nifurtimox. The neuroblastoma response to these treatments resulted in clinical remission. In vitro, treatment of a neuroblastoma cell line with nifurtimox resulted in decreased cell viability whereas no effect was seen on an endothelial cell line. CONCLUSIONS: Nifurtimox shows promise as a potential new treatment for neuroblastoma and warrants further testing.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Chagas Disease/drug therapy , Neuroblastoma/drug therapy , Nifurtimox/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Chagas Disease/complications , Chagas Disease/diagnosis , Child, Preschool , Cyclophosphamide/administration & dosage , Disease Progression , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , Neuroblastoma/complications , Neuroblastoma/diagnosis , Nifurtimox/administration & dosage , Nifurtimox/pharmacology , Recurrence , Remission Induction , Tomography, X-Ray Computed/methods , Topotecan/administration & dosage , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...