Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Sci Rep ; 14(1): 13844, 2024 06 15.
Article in English | MEDLINE | ID: mdl-38879591

ABSTRACT

Disrupted proteome homeostasis (proteostasis) in amyotrophic lateral sclerosis (ALS) has been a major focus of research in the past two decades. However, the proteostasis processes that become disturbed in ALS are not fully understood. Obtaining more detailed knowledge of proteostasis disruption in association with different ALS-causing mutations will improve our understanding of ALS pathophysiology and may identify novel therapeutic targets and strategies for ALS patients. Here we describe the development and use of a novel high-content analysis (HCA) assay to investigate proteostasis disturbances caused by the expression of several ALS-causing gene variants. This assay involves the use of conformationally-destabilised mutants of firefly luciferase (Fluc) to examine protein folding/re-folding capacity in NSC-34 cells expressing ALS-associated mutations in the genes encoding superoxide dismutase-1 (SOD1A4V) and cyclin F (CCNFS621G). We demonstrate that these Fluc isoforms can be used in high-throughput format to report on reductions in the activity of the chaperone network that result from the expression of SOD1A4V, providing multiplexed information at single-cell resolution. In addition to SOD1A4V and CCNFS621G, NSC-34 models of ALS-associated TDP-43, FUS, UBQLN2, OPTN, VCP and VAPB mutants were generated that could be screened using this assay in future work. For ALS-associated mutant proteins that do cause reductions in protein quality control capacity, such as SOD1A4V, this assay has potential to be applied in drug screening studies to identify candidate compounds that can ameliorate this deficiency.


Subject(s)
Amyotrophic Lateral Sclerosis , Mutation , Protein Folding , Proteostasis , Superoxide Dismutase-1 , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Humans , Superoxide Dismutase-1/metabolism , Superoxide Dismutase-1/genetics , Cell Line , Mice , Animals
2.
Am J Physiol Endocrinol Metab ; 326(6): E842-E855, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38656127

ABSTRACT

Fatty liver is characterized by the expansion of lipid droplets (LDs) and is associated with the development of many metabolic diseases. We assessed the morphology of hepatic LDs and performed quantitative proteomics in lean, glucose-tolerant mice compared with high-fat diet (HFD) fed mice that displayed hepatic steatosis and glucose intolerance as well as high-starch diet (HStD) fed mice who exhibited similar levels of hepatic steatosis but remained glucose tolerant. Both HFD- and HStD-fed mice had more and larger LDs than Chow-fed animals. We observed striking differences in liver LD proteomes of HFD- and HStD-fed mice compared with Chow-fed mice, with fewer differences between HFD and HStD. Taking advantage of our diet strategy, we identified a fatty liver LD proteome consisting of proteins common in HFD- and HStD-fed mice, as well as a proteome associated with glucose tolerance that included proteins shared in Chow and HStD but not HFD-fed mice. Notably, glucose intolerance was associated with changes in the ratio of adipose triglyceride lipase to perilipin 5 in the LD proteome, suggesting dysregulation of neutral lipid homeostasis in glucose-intolerant fatty liver. We conclude that our novel dietary approach uncouples ectopic lipid burden from insulin resistance-associated changes in the hepatic lipid droplet proteome.NEW & NOTEWORTHY This study identified a fatty liver lipid droplet proteome and one associated with glucose tolerance. Notably, glucose intolerance was linked with changes in the ratio of adipose triglyceride lipase to perilipin 5 that is indicative of dysregulation of neutral lipid homeostasis.


Subject(s)
Diet, High-Fat , Fatty Liver , Glucose Intolerance , Lipid Droplets , Liver , Mice, Inbred C57BL , Proteome , Animals , Male , Mice , Glucose Intolerance/metabolism , Glucose Intolerance/etiology , Proteome/metabolism , Diet, High-Fat/adverse effects , Liver/metabolism , Lipid Droplets/metabolism , Fatty Liver/metabolism , Lipid Metabolism , Proteomics/methods , Insulin Resistance
3.
Hum Mol Genet ; 32(14): 2386-2398, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37220877

ABSTRACT

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are fatal neurodegenerative disorders that share pathological features, including the aberrant accumulation of ubiquitinated protein inclusions within motor neurons. Previously, we have shown that the sequestration of ubiquitin (Ub) into inclusions disrupts Ub homeostasis in cells expressing ALS-associated variants superoxide dismutase 1 (SOD1), fused in sarcoma (FUS) and TAR DNA-binding protein 43 (TDP-43). Here, we investigated whether an ALS/FTD-linked pathogenic variant in the CCNF gene, encoding the E3 Ub ligase Cyclin F (CCNF), also perturbs Ub homeostasis. The presence of a pathogenic CCNF variant was shown to cause ubiquitin-proteasome system (UPS) dysfunction in induced pluripotent stem cell-derived motor neurons harboring the CCNF  S621G mutation. The expression of the CCNFS621G variant was associated with an increased abundance of ubiquitinated proteins and significant changes in the ubiquitination of key UPS components. To further investigate the mechanisms responsible for this UPS dysfunction, we overexpressed CCNF in NSC-34 cells and found that the overexpression of both wild-type (WT) and the pathogenic variant of CCNF (CCNFS621G) altered free Ub levels. Furthermore, double mutants designed to decrease the ability of CCNF to form an active E3 Ub ligase complex significantly improved UPS function in cells expressing both CCNFWT and the CCNFS621G variant and were associated with increased levels of free monomeric Ub. Collectively, these results suggest that alterations to the ligase activity of the CCNF complex and the subsequent disruption to Ub homeostasis play an important role in the pathogenesis of CCNF-associated ALS/FTD.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Pick Disease of the Brain , Humans , Amyotrophic Lateral Sclerosis/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Cyclins/genetics , Motor Neurons/metabolism , Ubiquitin/genetics , Ubiquitin/metabolism , Proteasome Endopeptidase Complex/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Pick Disease of the Brain/metabolism , Homeostasis/genetics , Mutation
4.
Prog Biophys Mol Biol ; 174: 3-27, 2022 10.
Article in English | MEDLINE | ID: mdl-35716729

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal neurodegenerative disease that results from the loss of both upper and lower motor neurons. It is the most common motor neuron disease and currently has no effective treatment. There is mounting evidence to suggest that disturbances in proteostasis play a significant role in ALS pathogenesis. Proteostasis is the maintenance of the proteome at the right level, conformation and location to allow a cell to perform its intended function. In this review, we present a thorough synthesis of the literature that provides evidence that genetic mutations associated with ALS cause imbalance to a proteome that is vulnerable to such pressure due to its metastable nature. We propose that the mechanism underlying motor neuron death caused by defects in mRNA metabolism and protein degradation pathways converges on proteostasis dysfunction. We propose that the proteostasis network may provide an effective target for therapeutic development in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Humans , Motor Neurons/metabolism , Motor Neurons/pathology , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Proteome , Proteostasis
5.
iScience ; 23(11): 101700, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33196025

ABSTRACT

A major feature of amyotrophic lateral sclerosis (ALS) pathology is the accumulation of ubiquitin (Ub) into intracellular inclusions. This sequestration of Ub may reduce the availability of free Ub, disrupting Ub homeostasis and ultimately compromising cellular function and survival. We previously reported significant disturbance of Ub homeostasis in neuronal-like cells expressing mutant SOD1. Here, we show that Ub homeostasis is also perturbed in neuronal-like cells expressing either TDP-43 or FUS. The expression of mutant TDP-43 and mutant FUS led to UPS dysfunction, which was associated with a redistribution of Ub and depletion of the free Ub pool. Redistribution of Ub is also a feature of sporadic ALS, with an increase in Ub signal associated with inclusions and no compensatory increase in Ub expression. Together, these findings suggest that alterations to Ub homeostasis caused by the misfolding and aggregation of ALS-associated proteins play an important role in the pathogenesis of ALS.

6.
PLoS One ; 15(11): e0242133, 2020.
Article in English | MEDLINE | ID: mdl-33166352

ABSTRACT

Cancer research in the news is often associated with sensationalised and inaccurate reporting, which may give rise to false hopes and expectations. The role of study selection for cancer-related news stories is an important but less commonly acknowledged issue, as the outcomes of primary research are generally less reliable than those of meta-analyses and systematic reviews. Few studies have investigated the quality of research that makes the news and no previous analyses of the proportions of primary and secondary research in the news have been found in the literature. We analysed distribution of study types, research sources, reporting quality, gender bias, and national bias in online news reports by four major news outlets in USA, UK and Australia over six-months. We measured significant variation in reporting quality and observed biases in many aspects of cancer research reporting, including the types of study selected for coverage, the spectrum of cancer types, gender of scientists, and geographical source of research represented. We discuss the implications of these findings for guiding accurate, contextual reporting of cancer research, which is critical in helping the public understand complex science, appreciate the outcomes of publicly-funded research, maintain trust, and assist informed decision-making. The striking gender bias observed may compromise high-quality coverage of research by limiting diversity of opinion, reinforces stereotypes and skews public visibility and recognition towards male scientists. Our findings provide useful guidelines for scientists and journalists alike to consider in providing the most informative and accurate reporting of research.


Subject(s)
Biomedical Research , Mass Media/standards , Neoplasms/psychology , Periodicals as Topic/standards , Bias , Humans
7.
Pharmaceutics ; 12(7)2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32645963

ABSTRACT

The urokinase plasminogen activator and its receptor (uPA/uPAR) are biomarkers for metastasis, especially in triple-negative breast cancer. We prepared anti-mitotic N-alkylisatin (N-AI)-loaded liposomes functionalized with the uPA/uPAR targeting ligand, plasminogen activator inhibitor type 2 (PAI-2/SerpinB2), and assessed liposome uptake in vitro and in vivo. Receptor-dependent uptake of PAI-2-functionalized liposomes was significantly higher in the uPA/uPAR overexpressing MDA-MB-231 breast cancer cell line relative to the low uPAR/uPAR expressing MCF-7 breast cancer cell line. Furthermore, N-AI cytotoxicity was enhanced in a receptor-dependent manner. In vivo, PAI-2 N-AI liposomes had a plasma half-life of 5.82 h and showed an increased accumulation at the primary tumor site in an orthotopic MDA-MB-231 BALB/c-Fox1nu/Ausb xenograft mouse model, relative to the non-functionalized liposomes, up to 6 h post-injection. These findings support the further development of N-AI-loaded PAI-2-functionalized liposomes for uPA/uPAR-positive breast cancer, especially against triple-negative breast cancer, for which the prognosis is poor and treatment is limited.

8.
Science ; 368(6495): 1127-1131, 2020 06 05.
Article in English | MEDLINE | ID: mdl-32499442

ABSTRACT

In microorganisms, evolutionarily conserved mechanisms facilitate adaptation to harsh conditions through stress-induced mutagenesis (SIM). Analogous processes may underpin progression and therapeutic failure in human cancer. We describe SIM in multiple in vitro and in vivo models of human cancers under nongenotoxic drug selection, paradoxically enhancing adaptation at a competing intrinsic fitness cost. A genome-wide approach identified the mechanistic target of rapamycin (MTOR) as a stress-sensing rheostat mediating SIM across multiple cancer types and conditions. These observations are consistent with a two-phase model for drug resistance, in which an initially rapid expansion of genetic diversity is counterbalanced by an intrinsic fitness penalty, subsequently normalizing to complete adaptation under the new conditions. This model suggests synthetic lethal strategies to minimize resistance to anticancer therapy.


Subject(s)
Adaptation, Physiological/genetics , Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/genetics , Mutagenesis , Neoplasms/drug therapy , Neoplasms/genetics , TOR Serine-Threonine Kinases/metabolism , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , DNA Repair/genetics , Genetic Fitness , Genome-Wide Association Study , Humans , Selection, Genetic , Signal Transduction , TOR Serine-Threonine Kinases/genetics
9.
Int J Biochem Cell Biol ; 123: 105746, 2020 06.
Article in English | MEDLINE | ID: mdl-32315770

ABSTRACT

Ubiquitin-activating enzyme E1, UBA1, functions at the apex of the enzymatic ubiquitylation cascade, catalysing ubiquitin activation. UBA1 is thus of fundamental importance to the modulation of ubiquitin homeostasis and to all downstream ubiquitylation-dependent cellular processes, including proteolysis through the ubiquitin-proteasome system and selective autophagy. The proteasome-dependent and -independent functions of UBA1 contribute significantly to a range of processes crucial to neuronal health. The significance of UBA1 activity to neuronal health is clear in light of accumulating evidence implicating impaired UBA1 activity in a range of neurodegenerative conditions, including Parkinson's disease, Alzheimer's disease, Huntington's disease and spinal muscular atrophy. Moreover, ubiquitylation-independent functions of UBA1 of importance to neuronal functioning have been proposed. Here, we summarise findings supporting the significant role of UBA1 in regulating neuronal functioning, and discuss the detrimental consequences of UBA1 impairment that contribute to neuronal dysfunction and degeneration.


Subject(s)
Neurodegenerative Diseases/enzymology , Neurons/enzymology , Ubiquitin-Activating Enzymes/metabolism , Ubiquitination , Animals , Autophagy/genetics , Humans , Motor Neurons/metabolism , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , Muscular Atrophy, Spinal/physiopathology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/physiopathology , Neurodegenerative Diseases/therapy , Neurons/metabolism , Signal Transduction/genetics , Ubiquitin/metabolism , Ubiquitin-Activating Enzymes/chemistry , Ubiquitin-Activating Enzymes/genetics , Ubiquitin-Activating Enzymes/physiology , Ubiquitination/genetics
10.
J Lipid Res ; 61(2): 178-191, 2020 02.
Article in English | MEDLINE | ID: mdl-31857389

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are emerging as leading causes of liver disease worldwide and have been recognized as one of the major unmet medical needs of the 21st century. Our recent translational studies in mouse models, human cell lines, and well-characterized patient cohorts have identified serine/threonine kinase (STK)25 as a protein that coats intrahepatocellular lipid droplets (LDs) and critically regulates liver lipid homeostasis and progression of NAFLD/NASH. Here, we studied the mechanism-of-action of STK25 in steatotic liver by relative quantification of the hepatic LD-associated phosphoproteome from high-fat diet-fed Stk25 knockout mice compared with their wild-type littermates. We observed a total of 131 proteins and 60 phosphoproteins that were differentially represented in STK25-deficient livers. Most notably, a number of proteins involved in peroxisomal function, ubiquitination-mediated proteolysis, and antioxidant defense were coordinately regulated in Stk25-/- versus wild-type livers. We confirmed attenuated peroxisomal biogenesis and protection against oxidative and ER stress in STK25-deficient human liver cells, demonstrating the hepatocyte-autonomous manner of STK25's action. In summary, our results suggest that regulation of peroxisomal function and metabolic stress response may be important molecular mechanisms by which STK25 controls the development and progression of NAFLD/NASH.


Subject(s)
Fatty Liver/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Lipid Droplets/enzymology , Peroxisomes/metabolism , Protein Serine-Threonine Kinases/metabolism , Stress, Physiological , Animals , Diet, High-Fat/adverse effects , Disease Models, Animal , Humans , Intracellular Signaling Peptides and Proteins/deficiency , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Protein Serine-Threonine Kinases/deficiency
11.
Cells ; 8(6)2019 06 13.
Article in English | MEDLINE | ID: mdl-31200561

ABSTRACT

The ubiquitin proteasome system (UPS) plays an important role in regulating numerous cellular processes, and a dysfunctional UPS is thought to contribute to motor neuron disease. Consequently, we sought to map the changing ubiquitome in human iPSCs during their pluripotent stage and following differentiation to motor neurons. Ubiquitinomics analysis identified that spliceosomal and ribosomal proteins were more ubiquitylated in pluripotent stem cells, whilst proteins involved in fatty acid metabolism and the cytoskeleton were specifically ubiquitylated in the motor neurons. The UPS regulator, ubiquitin-like modifier activating enzyme 1 (UBA1), was increased 36-fold in the ubiquitome of motor neurons compared to pluripotent stem cells. Thus, we further investigated the functional consequences of inhibiting the UPS and UBA1 on motor neurons. The proteasome inhibitor MG132, or the UBA1-specific inhibitor PYR41, significantly decreased the viability of motor neurons. Consistent with a role of the UPS in maintaining the cytoskeleton and regulating motor neuron differentiation, UBA1 inhibition also reduced neurite length. Pluripotent stem cells were extremely sensitive to MG132, showing toxicity at nanomolar concentrations. The motor neurons were more resilient to MG132 than pluripotent stem cells but demonstrated higher sensitivity than fibroblasts. Together, this data highlights the important regulatory role of the UPS in pluripotent stem cell survival and motor neuron differentiation.


Subject(s)
Cell Differentiation , Motor Neurons/cytology , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism , Cell Survival , Female , Fibroblasts/cytology , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Male , Middle Aged , Proteome/metabolism
12.
Breast Cancer Res ; 21(1): 43, 2019 03 21.
Article in English | MEDLINE | ID: mdl-30898150

ABSTRACT

BACKGROUND: The oncogenic receptor tyrosine kinase (RTK) ERBB2 is known to dimerize with other EGFR family members, particularly ERBB3, through which it potently activates PI3K signalling. Antibody-mediated inhibition of this ERBB2/ERBB3/PI3K axis has been a cornerstone of treatment for ERBB2-amplified breast cancer patients for two decades. However, the lack of response and the rapid onset of relapse in many patients now question the assumption that the ERBB2/ERBB3 heterodimer is the sole relevant effector target of these therapies. METHODS: Through a systematic protein-protein interaction screen, we have identified and validated alternative RTKs that interact with ERBB2. Using quantitative readouts of signalling pathway activation and cell proliferation, we have examined their influence upon the mechanism of trastuzumab- and pertuzumab-mediated inhibition of cell growth in ERBB2-amplified breast cancer cell lines and a patient-derived xenograft model. RESULTS: We now demonstrate that inactivation of ERBB3/PI3K by these therapeutic antibodies is insufficient to inhibit the growth of ERBB2-amplified breast cancer cells. Instead, we show extensive promiscuity between ERBB2 and an array of RTKs from outside of the EGFR family. Paradoxically, pertuzumab also acts as an artificial ligand to promote ERBB2 activation and ERK signalling, through allosteric activation by a subset of these non-canonical RTKs. However, this unexpected activation mechanism also increases the sensitivity of the receptor network to the ERBB2 kinase inhibitor lapatinib, which in combination with pertuzumab, displays a synergistic effect in single-agent resistant cell lines and PDX models. CONCLUSIONS: The interaction of ERBB2 with a number of non-canonical RTKs activates a compensatory signalling response following treatment with pertuzumab, although a counter-intuitive combination of ERBB2 antibody therapy and a kinase inhibitor can overcome this innate therapeutic resistance.


Subject(s)
Breast Neoplasms/metabolism , Drug Resistance, Neoplasm , Protein Kinase Inhibitors/pharmacology , Protein Multimerization , Receptor, ErbB-2/chemistry , Receptor, ErbB-2/metabolism , Animals , Antibodies, Monoclonal, Humanized/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Fluorescent Antibody Technique , Humans , Immunohistochemistry , Mice , Phosphorylation , Receptor, ErbB-2/antagonists & inhibitors , Signal Transduction/drug effects , Trastuzumab/pharmacology , Xenograft Model Antitumor Assays
13.
Mol Cancer Res ; 17(4): 949-962, 2019 04.
Article in English | MEDLINE | ID: mdl-30647103

ABSTRACT

Prostate cancer cells exhibit altered cellular metabolism but, notably, not the hallmarks of Warburg metabolism. Prostate cancer cells exhibit increased de novo synthesis of fatty acids (FA); however, little is known about how extracellular FAs, such as those in the circulation, may support prostate cancer progression. Here, we show that increasing FA availability increased intracellular triacylglycerol content in cultured patient-derived tumor explants, LNCaP and C4-2B spheroids, a range of prostate cancer cells (LNCaP, C4-2B, 22Rv1, PC-3), and prostate epithelial cells (PNT1). Extracellular FAs are the major source (∼83%) of carbons to the total lipid pool in all cell lines, compared with glucose (∼13%) and glutamine (∼4%), and FA oxidation rates are greater in prostate cancer cells compared with PNT1 cells, which preferentially partitioned extracellular FAs into triacylglycerols. Because of the higher rates of FA oxidation in C4-2B cells, cells remained viable when challenged by the addition of palmitate to culture media and inhibition of mitochondrial FA oxidation sensitized C4-2B cells to palmitate-induced apoptosis. Whereas in PC-3 cells, palmitate induced apoptosis, which was prevented by pretreatment of PC-3 cells with FAs, and this protective effect required DGAT-1-mediated triacylglycerol synthesis. These outcomes highlight for the first-time heterogeneity of lipid metabolism in prostate cancer cells and the potential influence that obesity-associated dyslipidemia or host circulating has on prostate cancer progression. IMPLICATIONS: Extracellular-derived FAs are primary building blocks for complex lipids and heterogeneity in FA metabolism exists in prostate cancer that can influence tumor cell behavior.


Subject(s)
Fatty Acids/metabolism , Lipids/biosynthesis , Prostatic Neoplasms/metabolism , Cell Line, Tumor , Extracellular Fluid/metabolism , Humans , Lipid Metabolism , Male , Palmitates/metabolism , Triglycerides/metabolism
14.
Med Sci Educ ; 29(2): 357-361, 2019 Jun.
Article in English | MEDLINE | ID: mdl-34457492

ABSTRACT

INTRODUCTION: Narratives (as opposed to stories) can assess multiple facets of the same problem through the viewpoints of different characters. METHODS: Narratives related to three cancer patients, from diagnosis to cure or death, were used to teach seven cancer-related themes in a Cancer Pathology course offered to third-year medical science and science (college) undergraduates. RESULTS: The majority of students preferred narrative-based learning compared with traditional learning methods because they felt that it improved their learning experience and retention of information. CONCLUSION: Narrative-based learning may improve the learning experience of students by contextualizing complex concepts and highlighting real-world applications of knowledge.

15.
Mol Oncol ; 12(9): 1623-1638, 2018 09.
Article in English | MEDLINE | ID: mdl-30099850

ABSTRACT

Breast cancer (BrCa) metabolism is geared toward biomass synthesis and maintenance of reductive capacity. Changes in glucose and glutamine metabolism in BrCa have been widely reported, yet the contribution of fatty acids (FAs) in BrCa biology remains to be determined. We recently reported that adipocyte coculture alters MCF-7 and MDA-MB-231 cell metabolism and promotes proliferation and migration. Since adipocytes are FA-rich, and these FAs are transferred to BrCa cells, we sought to elucidate the FA metabolism of BrCa cells and their response to FA-rich environments. MCF-7 and MDA-MB-231 cells incubated in serum-containing media supplemented with FAs accumulate extracellular FAs as intracellular triacylglycerols (TAG) in a dose-dependent manner, with MDA-MB-231 cells accumulating more TAG. The differences in TAG levels were a consequence of distinct differences in intracellular partitioning of FAs, and not due to differences in the rate of FA uptake. Specifically, MCF-7 cells preferentially partition FAs into mitochondrial oxidation, whereas MDA-MB-231 cells partition FAs into TAG synthesis. These differences in intracellular FA handling underpin differences in the sensitivity to palmitate-induced lipotoxicity, with MDA-MB-231 cells being highly sensitive, whereas MCF-7 cells are partially protected. The attenuation of palmitate-induced lipotoxicity in MCF-7 cells was reversed by inhibition of FA oxidation. Pretreatment of MDA-MB-231 cells with FAs increased TAG synthesis and reduced palmitate-induced apoptosis. Our results provide novel insight into the potential influences of obesity on BrCa biology, highlighting distinct differences in FA metabolism in MCF-7 and MDA-MB-231 cells and how lipid-rich environments modulate these effects.


Subject(s)
Apoptosis/drug effects , Breast Neoplasms/metabolism , Fatty Acids/metabolism , Obesity/metabolism , Palmitates/pharmacology , Triglycerides/biosynthesis , Breast Neoplasms/etiology , Carnitine O-Palmitoyltransferase/metabolism , Cell Proliferation/drug effects , Estrogen Receptor alpha/metabolism , Female , Humans , Lipase/biosynthesis , Lipolysis , MCF-7 Cells , Mitochondria/metabolism , Obesity/complications , Oleic Acid/pharmacology , Oxidative Phosphorylation , Signal Transduction/drug effects
16.
J Vis Exp ; (136)2018 06 15.
Article in English | MEDLINE | ID: mdl-29985350

ABSTRACT

The assembly of protein complexes is a central mechanism underlying the regulation of many cell signaling pathways. A major focus of biomedical research is deciphering how these dynamic protein complexes act to integrate signals from multiple sources in order to direct a specific biological response, and how this becomes deregulated in many disease settings. Despite the importance of this key biochemical mechanism, there is a lack of experimental techniques that can facilitate the specific and sensitive deconvolution of these multi-molecular signaling complexes. Here this shortcoming is addressed through the combination of a protein complementation assay with a conformation-specific nanobody, which we have termed Bimolecular Complementation Affinity Purification (BiCAP). This novel technique facilitates the specific isolation and downstream proteomic characterization of any pair of interacting proteins, to the exclusion of un-complexed individual proteins and complexes formed with competing binding partners. The BiCAP technique is adaptable to a wide array of downstream experimental assays, and the high degree of specificity afforded by this technique allows more nuanced investigations into the mechanics of protein complex assembly than is currently possible using standard affinity purification techniques.


Subject(s)
Fluorescence , Multiprotein Complexes/chemistry , Protein Interaction Domains and Motifs/physiology , Proteomics/methods , Humans , Proteins/metabolism , Signal Transduction
17.
Mol Biol Cell ; 29(13): 1542-1554, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29742019

ABSTRACT

Primary cilia are crucial for signal transduction in a variety of pathways, including hedgehog and Wnt. Disruption of primary cilia formation (ciliogenesis) is linked to numerous developmental disorders (known as ciliopathies) and diseases, including cancer. The ubiquitin-proteasome system (UPS) component UBR5 was previously identified as a putative positive regulator of ciliogenesis in a functional genomics screen. UBR5 is an E3 ubiquitin ligase that is frequently deregulated in tumors, but its biological role in cancer is largely uncharacterized, partly due to a lack of understanding of interacting proteins and pathways. We validated the effect of UBR5 depletion on primary cilia formation using a robust model of ciliogenesis, and identified CSPP1, a centrosomal and ciliary protein required for cilia formation, as a UBR5-interacting protein. We show that UBR5 ubiquitylates CSPP1, and that UBR5 is required for cytoplasmic organization of CSPP1-comprising centriolar satellites in centrosomal periphery, suggesting that UBR5-mediated ubiquitylation of CSPP1 or associated centriolar satellite constituents is one underlying requirement for cilia expression. Hence, we have established a key role for UBR5 in ciliogenesis that may have important implications in understanding cancer pathophysiology.


Subject(s)
Centrioles/metabolism , Cilia/metabolism , Ubiquitin-Protein Ligases/metabolism , Biopsy , Cell Cycle Proteins/metabolism , Cell Line, Tumor , HEK293 Cells , Humans , Microtubule-Associated Proteins/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Polyubiquitin/metabolism , Protein Binding , Ubiquitin-Protein Ligases/genetics , Ubiquitination
18.
J Cell Sci ; 131(11)2018 06 12.
Article in English | MEDLINE | ID: mdl-29748379

ABSTRACT

A hallmark of amyotrophic lateral sclerosis (ALS) pathology is the accumulation of ubiquitylated protein inclusions within motor neurons. Recent studies suggest the sequestration of ubiquitin (Ub) into inclusions reduces the availability of free Ub, which is essential for cellular function and survival. However, the dynamics of the Ub landscape in ALS have not yet been described. Here, we show that Ub homeostasis is altered in a cell model of ALS induced by expressing mutant SOD1 (SOD1A4V). By monitoring the distribution of Ub in cells expressing SOD1A4V, we show that Ub is present at the earliest stages of SOD1A4V aggregation, and that cells containing SOD1A4V aggregates have greater ubiquitin-proteasome system (UPS) dysfunction. Furthermore, SOD1A4V aggregation is associated with the redistribution of Ub and depletion of the free Ub pool. Ubiquitomics analysis indicates that expression of SOD1A4V is associated with a shift of Ub to a pool of supersaturated proteins, including those associated with oxidative phosphorylation and metabolism, corresponding with altered mitochondrial morphology and function. Taken together, these results suggest that misfolded SOD1 contributes to UPS dysfunction and that Ub homeostasis is an important target for monitoring pathological changes in ALS.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Homeostasis , Superoxide Dismutase-1/metabolism , Ubiquitin/metabolism , Amyotrophic Lateral Sclerosis/etiology , Animals , Cell Line, Tumor , Humans , Mice , Mutation , Proteasome Endopeptidase Complex/metabolism , Protein Folding , Superoxide Dismutase-1/genetics
19.
J Control Release ; 277: 1-13, 2018 05 10.
Article in English | MEDLINE | ID: mdl-29501721

ABSTRACT

The development of therapeutic resistance to targeted anticancer therapies remains a significant clinical problem, with intratumoral heterogeneity playing a key role. In this context, improving the therapeutic outcome through simultaneous targeting of multiple tumor cell subtypes within a heterogeneous tumor is a promising approach. Liposomes have emerged as useful drug carriers that can reduce systemic toxicity and increase drug delivery to the tumor site. While clinically used liposomal drug formulations show marked therapeutic advantages over free drug formulations, ligand-functionalized liposomes that can target multiple tumor cell subtypes may further improve the therapeutic efficacy by facilitating drug delivery to a broader population of tumor cells making up the heterogeneous tumor tissue. Ligand-directed liposomes enable the so-called active targeting of cell receptors via surface-attached ligands that direct drug uptake into tumor cells or tumor-associated stromal cells, and so can increase the selectivity of drug delivery. Despite promising preclinical results demonstrating improved targeting and anti-tumor effects of ligand-directed liposomes, there has been limited translation of this approach to the clinic. Key challenges for translation include the lack of established methods to scale up production and comprehensively characterize ligand-functionalized liposome formulations, as well as the inadequate recapitulation of in vivo tumors in the preclinical models currently used to evaluate their performance. Herein, we discuss the utility of recent ligand-directed liposome approaches, with a focus on dual-ligand liposomes, for the treatment of solid tumors and examine the drawbacks limiting their progression to clinical adoption.


Subject(s)
Antineoplastic Agents/administration & dosage , Drug Delivery Systems/trends , Neoplasms/drug therapy , Translational Research, Biomedical/trends , Animals , Antineoplastic Agents/pharmacokinetics , Drug Delivery Systems/methods , Humans , Ligands , Liposomes , Neoplasms/metabolism , Neoplasms/pathology , Translational Research, Biomedical/methods
20.
Front Neurosci ; 11: 476, 2017.
Article in English | MEDLINE | ID: mdl-28912673

ABSTRACT

Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease affecting the upper and lower motor neurons in the motor cortex and spinal cord. Abnormal accumulation of mutant superoxide dismutase I (SOD1) in motor neurons is a pathological hallmark of some forms of the disease. We have shown that the orderly progression of the disease may be explained by misfolded SOD1 cell-to-cell propagation, which is reliant upon its active endogenous synthesis. Reducing the levels of SOD1 is therefore a promising therapeutic approach. Antisense oligonucleotides (ASOs) can efficiently silence proteins with gain-of-function mutations. However, naked ASOs have a short circulation half-life and are unable to cross the blood brain barrier (BBB) warranting the use of a drug carrier for effective delivery. In this study, calcium phosphate lipid coated nanoparticles (CaP-lipid NPs) were developed for delivery of SOD1 ASO to motor neurons. The most promising nanoparticle formulation (Ca/P ratio of 100:1), had a uniform spherical core-shell morphology with an average size of 30 nm, and surface charge (ζ-potential) of -4.86 mV. The encapsulation efficiency of ASO was 48% and stability studies found the particle to be stable over a period of 20 days. In vitro experiments demonstrated that the negatively charged ASO-loaded CaP-lipid NPs could effectively deliver SOD1-targeted ASO into a mouse motor neuron-like cell line (NSC-34) through endocytosis and significantly down-regulated SOD1 expression in HEK293 cells. The CaP-lipid NPs exhibited a pH-dependant dissociation, suggesting that that the acidification of lysosomes is the likely mechanism responsible for facilitating intracellular ASO release. To demonstrate tissue specific delivery and localization of these NPs we performed in vivo microinjections into zebrafish. Successful delivery of these NPs was confirmed for the zebrafish brain, the blood stream, and the spinal cord. These results suggest that CaP-lipid NPs could be an effective and safe delivery system for the improved delivery of SOD1 ASOs to motor neurons. Further in vivo evaluation in transgenic mouse models of SOD1 ALS are therefore warranted.

SELECTION OF CITATIONS
SEARCH DETAIL
...