Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 144
Filter
1.
Reprod Fertil ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38739749

ABSTRACT

Endometriosis is a chronic inflammatory condition affecting one in 10 women and those assigned female at birth, defined by the presence of endometrial-like tissue outside the uterus. It is commonly associated with pain, infertility, and mood disorders, and often comorbid with other chronic pain conditions, such as irritable bowel syndrome. Recent research has identified a key role for the microbiota-gut-brain axis in health and a range of inflammatory and neurological disorders, prompting an exploration of its potential mechanistic role in endometriosis. Increased awareness of the impact of the gut microbiota within the patient community, combined with the often-detrimental side effects of current therapies, has motivated many to utilise self-management strategies, such as dietary modification and supplements, despite a lack of robust clinical evidence. Current research has characterised the gut microbiota in endometriosis patients and animal models. However, small cohorts and differing methodology has resulted in little consensus in the data. In this narrative review, we summarise research studies that have investigated the role of gut microbiota and their metabolic products in the development and progression of endometriosis lesions, before summarising insights from research into co-morbid conditions and discussing the reported impact of self-management strategies on symptoms of endometriosis. Finally, we suggest ways in which this promising field of research could be expanded to explore the role of specific bacteria, improve access to 'microbial' phenotyping, and to develop personalised patient advice for reduction of symptoms such as chronic pain and bloating.

2.
Cell Rep Med ; 4(11): 101288, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37992677

ABSTRACT

Patients with endometriosis often report gastrointestinal symptoms in addition to those usually considered hallmarks of the disorder (pain and infertility). Yang et al.1 identify genetic risk factors that can contribute to a shared disease etiology, providing new opportunities for improvements in disease management.


Subject(s)
Endometriosis , Gastrointestinal Diseases , Infertility, Female , Female , Humans , Endometriosis/genetics , Endometriosis/complications , Endometriosis/diagnosis , Infertility, Female/etiology , Gastrointestinal Diseases/genetics , Gastrointestinal Diseases/complications
3.
Cell Rep Med ; 4(9): 101192, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37729869

ABSTRACT

Endometriosis is a common chronic pain condition with no known cure and limited treatment options. Digital technologies, ranging from smartphone apps to wearable sensors, have shown potential toward facilitating chronic pain assessment and management; however, to date, many of these tools have not been specifically deployed or evaluated in patients with endometriosis-associated pain. Informed by previous studies in related chronic pain conditions, we discuss how digital technologies may be used in endometriosis to facilitate objective, continuous, and holistic symptom tracking. We postulate that these pervasive and increasingly affordable technologies present promising opportunities toward developing decision-support tools assisting healthcare professionals and empowering patients with endometriosis to make better-informed choices about symptom management.


Subject(s)
Chronic Pain , Endometriosis , Female , Humans , Endometriosis/diagnosis , Digital Technology , Health Personnel
4.
Cells ; 12(12)2023 06 11.
Article in English | MEDLINE | ID: mdl-37371074

ABSTRACT

The liver performs a multitude of bodily functions, whilst retaining the ability to regenerate damaged tissue. In this review, we discuss sex steroid biology, regulation of mammalian liver physiology and the development of new model systems to improve our understanding of liver biology in health and disease. A major risk factor for the development of liver disease is hepatic fibrosis. Key drivers of this process are metabolic dysfunction and pathologic activation of the immune system. Although non-alcoholic fatty liver disease (NAFLD) is largely regarded as benign, it does progress to non-alcoholic steatohepatitis in a subset of patients, increasing their risk of developing cirrhosis and hepatocellular carcinoma. NAFLD susceptibility varies across the population, with obesity and insulin resistance playing a strong role in the disease development. Additionally, sex and age have been identified as important risk factors. In addition to the regulation of liver biochemistry, sex hormones also regulate the immune system, with sexual dimorphism described for both innate and adaptive immune responses. Therefore, sex differences in liver metabolism, immunity and their interplay are important factors to consider when designing, studying and developing therapeutic strategies to treat human liver disease. The purpose of this review is to provide the reader with a general overview of sex steroid biology and their regulation of mammalian liver physiology.


Subject(s)
Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Animals , Humans , Female , Male , Non-alcoholic Fatty Liver Disease/metabolism , Liver Cirrhosis/pathology , Gonadal Steroid Hormones , Steroids , Mammals
6.
Front Endocrinol (Lausanne) ; 13: 1027164, 2022.
Article in English | MEDLINE | ID: mdl-36465608

ABSTRACT

Decidualization is the hormone-dependent process of endometrial remodeling that is essential for fertility and reproductive health. It is characterized by dynamic changes in the endometrial stromal compartment including differentiation of fibroblasts, immune cell trafficking and vascular remodeling. Deficits in decidualization are implicated in disorders of pregnancy such as implantation failure, intra-uterine growth restriction, and pre-eclampsia. Androgens are key regulators of decidualization that promote optimal differentiation of stromal fibroblasts and activation of downstream signaling pathways required for endometrial remodeling. We have shown that androgen biosynthesis, via 5α-reductase-dependent production of dihydrotestosterone, is required for optimal decidualization of human stromal fibroblasts in vitro, but whether this is required for decidualization in vivo has not been tested. In the current study we used steroid 5α-reductase type 1 (SRD5A1) deficient mice (Srd5a1-/- mice) and a validated model of induced decidualization to investigate the role of SRD5A1 and intracrine androgen signaling in endometrial decidualization. We measured decidualization response (weight/proportion), transcriptomic changes, and morphological and functional parameters of vascular development. These investigations revealed a striking effect of 5α-reductase deficiency on the decidualization response. Furthermore, vessel permeability and transcriptional regulation of angiogenesis signaling pathways, particularly those that involved vascular endothelial growth factor (VEGF), were disrupted in the absence of 5α-reductase. In Srd5a1-/- mice, injection of dihydrotestosterone co-incident with decidualization restored decidualization responses, vessel permeability, and expression of angiogenesis genes to wild type levels. Androgen availability declines with age which may contribute to age-related risk of pregnancy disorders. These findings show that intracrine androgen signaling is required for optimal decidualization in vivo and confirm a major role for androgens in the development of the vasculature during decidualization through regulation of the VEGF pathway. These findings highlight new opportunities for improving age-related deficits in fertility and pregnancy health by targeting androgen-dependent signaling in the endometrium.


Subject(s)
3-Oxo-5-alpha-Steroid 4-Dehydrogenase , Decidua , Vascular Remodeling , Animals , Female , Mice , Pregnancy , 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/genetics , 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/metabolism , Androgens/pharmacology , Cholestenone 5 alpha-Reductase/genetics , Cholestenone 5 alpha-Reductase/metabolism , Decidua/drug effects , Decidua/metabolism , Dihydrotestosterone/pharmacology , Endometrium/drug effects , Endometrium/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Remodeling/drug effects , Vascular Remodeling/genetics , Vascular Remodeling/physiology
7.
Elife ; 112022 Dec 16.
Article in English | MEDLINE | ID: mdl-36524724

ABSTRACT

The human endometrium experiences repetitive cycles of tissue wounding characterised by piecemeal shedding of the surface epithelium and rapid restoration of tissue homeostasis. In this study, we used a mouse model of endometrial repair and three transgenic lines of mice to investigate whether epithelial cells that become incorporated into the newly formed luminal epithelium have their origins in one or more of the mesenchymal cell types present in the stromal compartment of the endometrium. Using scRNAseq, we identified a novel population of PDGFRb + mesenchymal stromal cells that developed a unique transcriptomic signature in response to endometrial breakdown/repair. These cells expressed genes usually considered specific to epithelial cells and in silico trajectory analysis suggested they were stromal fibroblasts in transition to becoming epithelial cells. To confirm our hypothesis we used a lineage tracing strategy to compare the fate of stromal fibroblasts (PDGFRa+) and stromal perivascular cells (NG2/CSPG4+). We demonstrated that stromal fibroblasts can undergo a mesenchyme to epithelial transformation and become incorporated into the re-epithelialised luminal surface of the repaired tissue. This study is the first to discover a novel population of wound-responsive, plastic endometrial stromal fibroblasts that contribute to the rapid restoration of an intact luminal epithelium during endometrial repair. These findings form a platform for comparisons both to endometrial pathologies which involve a fibrotic response (Asherman's syndrome, endometriosis) as well as other mucosal tissues which have a variable response to wounding.


The human uterus is a formidable organ. From puberty to menopause, it completely sheds off its internal lining every 28 days or so, creating what is in effect a large open wound. Unlike the skin or other parts of the body, however, this tissue can quickly repair itself without scarring. This fascinating process remains poorly understood, partly because human samples and animal models that mimic human menstruation are still lacking. This makes it difficult to grasp how various types of uterine cells get mobilised for healing. To fill this gap, Kirkwood et al. focused on fibroblasts, a heterogenous cell population which helps to support the epithelial cells lining the inside of the uterus. How these cells responded to the advent of menstruation was examined in female mice genetically manipulated to have human-like periods. A method known as single-cell RNAseq was used to track which genes were active in each of these cells before, one day and two days after period onset. This revealed the existence of a subpopulation of cells which only appeared when wound healing was most needed. These 'repair-specific' fibroblasts expressed a mixture of genes; those typical of fibroblasts but also some known to be active in the epithelial cells lining the uterus. This suggests that the cells were in the process of changing their identity so they could remake the uterine layer lost during a period. And indeed, labelling these fibroblasts with a fluorescent tag showed that, during healing, they had migrated from within the uterine tissue to become part of its newly restored internal surface. These results represent the first evidence that fibroblasts play a direct role in repairing the uterus during menstruation. From endometriosis to infertility, the lives of millions of people around the world are impacted by disorders which affect the uterine lining. A better understanding of how the uterus can fix itself month after month could help to find new treatments for these conditions. This knowledge could also be useful for to address abnormal wound healing in the skin and other tissues, as this process often involves fibroblasts.


Subject(s)
Endometriosis , Mesenchymal Stem Cells , Female , Mice , Humans , Animals , Menstruation/metabolism , Endometrium , Mesenchymal Stem Cells/metabolism , Epithelial Cells/metabolism , Sequence Analysis, RNA
8.
Front Reprod Health ; 4: 896170, 2022.
Article in English | MEDLINE | ID: mdl-36303676

ABSTRACT

Endometrial hyperplasia (EH) is a precursor lesion to endometrial carcinoma (EC). Risks for EC include genetic, hormonal and metabolic factors most notably those associated with obesity: rates are rising and there is concern that cases in pre-menopausal women may remain undetected. Making an accurate distinction between benign and pre-malignant disease is both a challenge for the pathologist and important to the gynecologist who wants to deliver the most appropriate care to meet the needs of the patient. Premalignant change may be recognized by histological changes of endometrial hyperplasia (which may occur with or without atypia) and endometrial intraepithelial neoplasia (EIN). In this study we created a tissue resource of EH samples diagnosed between 2004 and 2009 (n = 125) and used this to address key questions: 1. Are the EIN/WHO2014 diagnostic criteria able to consistently identify premalignant endometrium? 2. Can computer aided image analysis inform identification of EIN? 3. Can we improve diagnosis by incorporating analysis of protein expression using immunohistochemistry. Our findings confirmed the inclusion of EIN in diagnostic criteria resulted in a better agreement between expert pathologists compared with the previous WHO94 criteria used for the original diagnosis of our sample set. A computer model based on assessment of stromal:epithelial ratio appeared most accurate in classification of areas of tissue without EIN. From an extensive panel of putative endometrial protein tissue biomarkers a score based on assessment of HAND2, PTEN, and PAX2 was able to identify four clusters one of which appeared to be more likely to be benign. In summary, our study has highlighted new opportunities to improve diagnosis of pre-malignant disease in endometrium and provide a platform for further research on this important topic.

9.
Adv Exp Med Biol ; 1390: 21-39, 2022.
Article in English | MEDLINE | ID: mdl-36107311

ABSTRACT

The female reproductive system which consists of the ovaries, uterus (myometrium, endometrium), Fallopian tubes, cervix and vagina is exquisitely sensitive to the actions of steroid hormones. The ovaries play a key role in the synthesis of bioactive steroids (oestrogens, androgens, progestins) that act both within the tissue (intracrine/paracrine) as well as on other reproductive organs following release into the blood stream (endocrine action). Sex steroid receptors encoded by the oestrogen (ESR1, ESR2), progesterone (PR) and androgen (AR) receptor genes, which are members of the superfamily of ligand activated transcription factors are widely expressed within these tissues. These receptors play critical role(s) in regulation of cell proliferation, ovulation, endometrial receptivity, myometrial cell function and inflammatory cell infiltration. Our understanding of their importance has been informed by studies on human tissues and cells, which have employed immunohistochemistry as well as a wide range of molecular and genetic methods to identify which processes are dependent steroid ligand activation. The development of mice with targeted deletions of each of these receptors has provided complementary data that has extended our appreciation of cell-cell interactions in the fine tuning of reproductive tissue function. This large body of work has formed the basis of new and improved therapeutics to treat conditions such as infertility.


Subject(s)
Androgens , Receptors, Steroid , Animals , Estrogens/physiology , Female , Genitalia, Female/metabolism , Humans , Ligands , Mice , Progesterone/metabolism , Progestins , Receptors, Steroid/physiology
10.
Reprod Fertil ; 3(2): R51-R65, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35514537

ABSTRACT

Endometriosis is a chronic neuro-inflammatory disorder the defining feature of which is the growth of tissue (lesions) that resembles the endometrium outside the uterus. Estimates of prevalence quote rates of ~10% of women of reproductive age, equating to at least 190 million women world-wide. Genetic, hormonal and immunological factors have all been proposed as contributing to risk factors associated with the development of lesions. Twin studies report the heritable component of endometriosis as ~50%. Genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) that appear over-represented in patients with endometriosis, particularly those with more extensive disease (stage III/IV). In different sample populations, there has been replication of SNPs near genes involved in oestrogen and other steroid regulated pathways including ESR1 (oestrogen receptor alpha), GREB1, HOXA10, WNT4 and MAPK kinase signalling. Comparisons with GWAS conducted on other patient cohorts have found links with reproductive traits (age at menarche) and disorders (fibroids, endometrial and ovarian cancer) and common co-morbidities (migraine, depression, asthma). In summary, genetic analyses have provided new insights into the hormone-regulated pathways that may contribute to increased risk of developing endometriosis some of which may act in early life. New studies are needed to clarify the relationship between the many SNPs identified, the genes that they regulate and their contribution(s) to development of different forms of endometriosis. We hope that more advanced methods allowing integration between GWAS, epigenetic and tissue expression data will improve risk analysis and reduce diagnositic delay. Lay summary: Endometriosis is a debilitating reproductive disorder affecting ~10% of reproductive-age women, and those assigned female at birth, which causes a range of symptoms including chronic pain and infertility. The reason why some, but not all these individuals, develop the lesions that characterise the disease are poorly understood, but recently attention has focused on genetic risk factors to explain why the incidence is higher in some families. Studies on large cohorts of patients with comparison of their DNA to women without endometriosis or with other disorders have documented changes in genes associated with steroid hormone production or action. The results provide further evidence that endometriosis shares genetic risk factors with other disorders of the reproductive system and a platform for new ideas related to risk, biomarkers and therapies.


Subject(s)
Endometriosis , Endometriosis/etiology , Endometriosis/genetics , Estrogens , Female , Genome-Wide Association Study , Genomics , Humans , Polymorphism, Single Nucleotide , Steroids
11.
Biomedicines ; 10(2)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35203710

ABSTRACT

The aim of this study was to develop and refine a heterologous mouse model of endometriosis-associated pain in which non-evoked responses, more relevant to the patient experience, were evaluated. Immunodeficient female mice (N = 24) were each implanted with four endometriotic human lesions (N = 12) or control tissue fat (N = 12) on the abdominal wall using tissue glue. Evoked pain responses were measured biweekly using von Frey filaments. Non-evoked responses were recorded weekly for 8 weeks using a home cage analysis (HCA). Endpoints were distance traveled, social proximity, time spent in the center vs. outer areas of the cage, drinking, and climbing. Significant differences between groups for von Frey response, climbing, and drinking were detected on days 14, 21, and 35 post implanting surgery, respectively, and sustained for the duration of the experiment. In conclusion, a heterologous mouse model of endometriosis-associated evoked a non-evoked pain was developed to improve the relevance of preclinical models to patient experience as a platform for drug testing.

12.
Sci Immunol ; 6(65): eabj2132, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34797692

ABSTRACT

Alveolar macrophages are the most abundant macrophages in the healthy lung where they play key roles in homeostasis and immune surveillance against airborne pathogens. Tissue-specific differentiation and survival of alveolar macrophages rely on niche-derived factors, such as granulocyte-macrophage colony-stimulating factor (GM-CSF) and transforming growth factor­ß (TGF-ß). However, the nature of the downstream molecular pathways that regulate the identity and function of alveolar macrophages and their response to injury remain poorly understood. Here, we identify that the transcription factor EGR2 is an evolutionarily conserved feature of lung alveolar macrophages and show that cell-intrinsic EGR2 is indispensable for the tissue-specific identity of alveolar macrophages. Mechanistically, we show that EGR2 is driven by TGF-ß and GM-CSF in a PPAR-γ­dependent manner to control alveolar macrophage differentiation. Functionally, EGR2 was dispensable for the regulation of lipids in the airways but crucial for the effective handling of the respiratory pathogen Streptococcus pneumoniae. Last, we show that EGR2 is required for repopulation of the alveolar niche after sterile, bleomycin-induced lung injury and demonstrate that EGR2-dependent, monocyte-derived alveolar macrophages are vital for effective tissue repair after injury. Collectively, we demonstrate that EGR2 is an indispensable component of the transcriptional network controlling the identity and function of alveolar macrophages in health and disease.


Subject(s)
Early Growth Response Protein 2/immunology , Macrophages, Alveolar/immunology , Animals , Female , Humans , Macrophages, Alveolar/pathology , Male , Mice , Pneumococcal Infections/immunology , Pneumococcal Infections/pathology , Streptococcus pneumoniae/immunology
13.
Pain ; 162(9): 2349-2365, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34448751

ABSTRACT

ABSTRACT: Endometriosis (ENDO) and interstitial cystitis/bladder pain syndrome (IC/BPS) are chronic pain conditions for which better treatments are urgently needed. Development of new therapies with proven clinical benefit has been slow. We have conducted a review of existing preclinical in vivo models for ENDO and IC/BPS in rodents, discussed to what extent they replicate the phenotype and pain experience of patients, as well as their relevance for translational research. In 1009 publications detailing ENDO models, 41% used autologous, 26% syngeneic, 18% xenograft, and 11% allogeneic tissue in transplantation models. Intraperitoneal injection of endometrial tissue was the subcategory with the highest construct validity score for translational research. From 1055 IC/BPS publications, most interventions were bladder centric (85%), followed by complex mechanisms (8%) and stress-induced models (7%). Within these categories, the most frequently used models were instillation of irritants (92%), autoimmune (43%), and water avoidance stress (39%), respectively. Notably, although pelvic pain is a hallmark of both conditions and a key endpoint for development of novel therapies, only a small proportion of the studies (models of ENDO: 0.5%-12% and models of IC/BPS: 20%-44%) examined endpoints associated with pain. Moreover, only 2% and 3% of publications using models of ENDO and IC/BPS investigated nonevoked pain endpoints. This analysis highlights the wide variety of models used, limiting reproducibility and translation of results. We recommend refining models so that they better reflect clinical reality, sharing protocols, and using standardized endpoints to improve reproducibility. We are addressing this in our project Innovative Medicines Initiative-PainCare/Translational Research in Pelvic Pain.


Subject(s)
Cystitis, Interstitial , Endometriosis , Cystitis, Interstitial/therapy , Female , Humans , Pelvic Pain/therapy , Reproducibility of Results , Translational Research, Biomedical
14.
Cell ; 184(11): 2807-2824, 2021 05 27.
Article in English | MEDLINE | ID: mdl-34048704

ABSTRACT

Endometriosis is a common condition associated with infertility that causes chronic pain in many, but not all, women. It is defined by the presence of endometrial-like tissue outside the uterus. Although the cause and natural history of the disorder remain uncertain, hormonal, neurological, and immunological factors are all implicated in the mechanisms contributing to development of symptoms. Because definitive diagnosis requires surgery, there is often a long diagnostic delay after onset of symptoms. Current interventions for endometriosis have limited efficacy and unacceptable side effects/risks and are associated with high rates of symptom recurrence. Here, we review recent advances in our understanding of the etiology of endometriosis, discuss current diagnostic and treatment strategies, highlight current clinical trials, and consider how recent results offer new avenues for the identification of endometriosis biomarkers and the development of effective non-surgical therapies that are fertility-sparing.


Subject(s)
Endometriosis/etiology , Endometriosis/pathology , Endometriosis/therapy , Adult , Delayed Diagnosis , Endometrium/pathology , Female , Hormones/therapeutic use , Humans , Inflammation/pathology , Middle Aged , Pelvic Pain/physiopathology , Pelvic Pain/therapy , Surgical Procedures, Operative/methods , Tissue Adhesions/surgery , Uterus/pathology
15.
FASEB J ; 35(4): e21285, 2021 04.
Article in English | MEDLINE | ID: mdl-33710643

ABSTRACT

The endometrium is a dynamic tissue that exhibits remarkable resilience to repeated episodes of differentiation, breakdown, regeneration, and remodeling. Endometrial physiology relies on a complex interplay between the stromal and epithelial compartments with the former containing a mixture of fibroblasts, vascular, and immune cells. There is evidence for rare populations of putative mesenchymal progenitor cells located in the perivascular niche of human endometrium, but the existence of an equivalent cell population in mouse is unclear. We used the Pdgfrb-BAC-eGFP transgenic reporter mouse in combination with bulk and single-cell RNA sequencing to redefine the endometrial mesenchyme. In contrast to previous reports we show that CD146 is expressed in both PDGFRß + perivascular cells and CD31 + endothelial cells. Bulk RNAseq revealed cells in the perivascular niche which express the high levels of Pdgfrb as well as genes previously identified in pericytes and/or vascular smooth muscle cells (Acta2, Myh11, Olfr78, Cspg4, Rgs4, Rgs5, Kcnj8, and Abcc9). scRNA-seq identified five subpopulations of cells including closely related pericytes/vascular smooth muscle cells and three subpopulations of fibroblasts. All three fibroblast populations were PDGFRα+/CD34 + but were distinct in their expression of Ngfr/Spon2/Angptl7 (F1), Cxcl14/Smoc2/Rgs2 (F2), and Clec3b/Col14a1/Mmp3 (F3), with potential functions in the regulation of immune responses, response to wounding, and organization of extracellular matrix, respectively. Immunohistochemistry was used to investigate the spatial distribution of these populations revealing F1/NGFR + cells in most abundance beside epithelial cells. We provide the first definitive analysis of mesenchymal cells in the adult mouse endometrium identifying five subpopulations providing a platform for comparisons between mesenchymal cells in endometrium and other adult tissues which are prone to fibrosis.


Subject(s)
Endometrium/cytology , Mesenchymal Stem Cells/physiology , Animals , Biomarkers , Female , Gene Expression Regulation , Green Fluorescent Proteins , Homeostasis , Mice , Receptor, Platelet-Derived Growth Factor beta/metabolism , Sequence Analysis, RNA , Single-Cell Analysis , Transcriptome
16.
Reprod Fertil ; 2(1): 47-57, 2021 01.
Article in English | MEDLINE | ID: mdl-35128432

ABSTRACT

Endometriosis is a chronic neuroinflammatory pain condition affecting ~180 million women worldwide. Surgical removal or hormonal suppression of endometriosis lesions only relieves pain symptoms in some women and symptomatic relapse following treatment is common. Identifying factors that contribute to pain is key to developing new therapies. We collected peritoneal fluid samples and clinical data from a cohort of women receiving diagnostic laparoscopy for suspected endometriosis (n = 52). Peritoneal fluid immune cells were analysed by flow cytometry and data compared with pain scores determined using the pain domain of the Endometriosis Health Profile Questionnaire (EHP-30) in order to investigate the association between peritoneal immune cells and pain symptoms. Pain scores were not different between women with or without endometriosis, nor did they differ according to disease stage; consistent with a poor association between disease presentation and pain symptoms. However, linear regression and correlation analysis demonstrated that peritoneal macrophage abundance correlated with the severity of pelvic pain. CD14high peritoneal macrophages negatively correlated with pain scores whereas CD14low peritoneal macrophages were positively correlated, independent of diagnostic outcome at laparoscopy. Stratification by pain subtype, rather than endometriosis diagnosis, resulted in the most robust correlation between pain and macrophage adundance. Pain score strongly correlated with CD14high (P = 0.007) and CD14low (P = 0.008) macrophages in patients with non-menstrual pain and also in patients who reported dysmennorhea (CD14high P = 0.021, CD14low P = 0.019) or dysparunia (CD14high P = 0.027, CD14low P = 0.031). These results provide new insight into the association between peritoneal macrophages and pelvic pain which may aid the identification of future therapeutic targets. LAY SUMMARY: Endometriosis is a common condition where cells similar to those that line the womb are found elsewhere in the body. It is associated with inflammation and pain in the pelvis and affects ~180 million women worldwide. Current treatments are not effective for all patients and we, therefore, need to understand what causes pain in order to develop new treatments. We investigated the types of immune cells present within the pelvis of women undergoing investigation for suspected endometriosis. Disease diagnosis and stage (I-IV) was recorded along with pain score determined by questionnaire. We characterised the immune cells present and compared them to disease stage and pain score. We found that pelvic pain was linked to the abundance of immune cells but, surprisingly, not to disease stage. These findings suggest that immune cells are closely associated with pain severity in endometriosis and may be good targets for future endometriosis treatments.


Subject(s)
Endometriosis , Macrophages, Peritoneal , Ascitic Fluid , Chronic Disease , Female , Humans , Pelvic Pain , Peritoneum
17.
Front Reprod Health ; 3: 801843, 2021.
Article in English | MEDLINE | ID: mdl-36304046

ABSTRACT

The human endometrium is a remarkable tissue which may experience up to 400 cycles of hormone-driven proliferation, differentiation and breakdown during a woman's reproductive lifetime. During menstruation, when the luminal portion of tissue breaks down, it resembles a bloody wound with piecemeal shedding, exposure of underlying stroma and a strong inflammatory reaction. In the absence of pathology within a few days the integrity of the tissue is restored without formation of a scar and the endometrium is able to respond appropriately to subsequent endocrine signals in preparation for establishment of pregnancy if fertilization occurs. Understanding mechanisms regulating scarless repair of the endometrium is important both for design of therapies which can treat conditions where this is aberrant (heavy menstrual bleeding, fibroids, endometriosis, Asherman's syndrome) as well as to provide new information that might allow us to reduce fibrosis and scar formation in other tissues. Menstruation only occurs naturally in species that exhibit spontaneous stromal cell decidualization during the fertile cycle such as primates (including women) and the Spiny mouse. To take advantage of genetic models and detailed time course analysis, mouse models of endometrial shedding/repair involving hormonal manipulation, artificial induction of decidualization and hormone withdrawal have been developed and refined. These models are useful in modeling dynamic changes across the time course of repair and have recapitulated key features of endometrial repair in women including local hypoxia and immune cell recruitment. In this review we will consider the evidence that scarless repair of endometrial tissue involves changes in stromal cell function including mesenchyme to epithelial transition, epithelial cell proliferation and multiple populations of immune cells. Processes contributing to endometrial fibrosis (Asherman's syndrome) as well as scarless repair of other tissues including skin and oral mucosa are compared to that of menstrual repair.

18.
Adv Anat Embryol Cell Biol ; 232: 25-55, 2020.
Article in English | MEDLINE | ID: mdl-33278006

ABSTRACT

Pelvic pain is a common symptom of endometriosis. Our understanding of its etiology remains incomplete and medical management is limited by poor translation from preclinical models to clinical trials. In this review, we briefly consider the evidence, or lack thereof, that different subtypes of lesion, extra-uterine bleeding, and neuropathic pathways add to the complex and heterogeneous pain experience of women with the condition. We summarize the studies in rodent models of endometriosis that have used behavioral endpoints (evoked and non-evoked) to explore mechanisms of endometriosis-associated pain. Lesion innervation, activation of nerves by pronociceptive molecules released by immune cells, and a role for estrogen in modulating hyperalgesia are key endometriosis-associated pain mechanisms replicated in preclinical rodent models. The presence of ectopic (full thickness uterus or endometrial) tissue may be associated with changes in the spinal cord and brain, which appear to model changes reported in patients. While preclinical models using rats and mice have yielded insights that appear relevant to mechanisms responsible for the development of endometriosis-associated pain, they are limited in scope. Specifically, most studies are based on models that only resulted in the formation of superficial lesions and use induced (evoked) behavioral 'pain' tests. We suggest that translation for patient benefit will be improved by new approaches including models of ovarian and deep infiltrating disease and measurement of spontaneous pain behaviors. Future studies must also capitalize on new advances in the wider field of pain medicine to identify more effective treatments for endometriosis-associated pain.


Subject(s)
Endometriosis/complications , Pelvic Pain/etiology , Uterus/physiopathology , Animals , Disease Models, Animal , Endometriosis/pathology , Endometriosis/physiopathology , Female , Humans , Mice , Pelvic Pain/pathology , Pelvic Pain/physiopathology , Rats , Uterus/pathology
19.
Adv Anat Embryol Cell Biol ; 232: 99-111, 2020.
Article in English | MEDLINE | ID: mdl-33278009

ABSTRACT

Endometriosis is a complex disorder with a high socio-economic impact. Development of effective novel drug therapies which can be given to women to relieve chronic pain symptoms without side effects such as hormone suppression is urgently required, but progress has been slow. Several different rodent models of 'endometriosis' have been developed, the majority of which mimic aspects of peritoneal disease (e.g. 'lesions' in peritoneal cavity either surgically or spontaneously attached to wall, mesentery, fat). Results obtained using these models have informed our understanding of aetiology including evidence for differential expression of regulatory factors in lesions and impacts on pain perception and fertility. Refinement of these models to ensure reproducibility, extension of models to replicate ovarian and deep disease, complementary in vitro approaches and robust experimental design are all needed to ensure preclinical drug testing results in positive findings in clinical trials and translation for patient benefit.


Subject(s)
Endometriosis/complications , Infertility, Female/etiology , Infertility, Female/therapy , Ovarian Diseases/complications , Peritoneal Diseases/complications , Animals , Disease Models, Animal , Endometriosis/pathology , Female , Humans , Infertility, Female/pathology , Ovarian Diseases/pathology , Peritoneal Diseases/pathology
20.
Sci Rep ; 10(1): 15638, 2020 09 24.
Article in English | MEDLINE | ID: mdl-32973322

ABSTRACT

1-2% of pregnancies are ectopic, the majority implanting in the Fallopian tube. A single, systemic dose of methotrexate, a DNA-synthesis (S phase) inhibitor, has been used since 1991 for outpatient treatment of women with stable EP. However, methotrexate has limited clinical and cost effectiveness, restricting its use to 25-30% of these women. There is an unmet need for better medical treatment for EP. Colony stimulating factor-1 (CSF-1) promotes placentation and creates a pro-inflammatory environment that is fundamental for the maintenance of a normal pregnancy. We hypothesised that CSF-1 is also involved in the placentation and maintenance of an EP. Herein, we demonstrate the immunolocalisation of the CSF-1 receptor (CSF-1R) as well as its ligand (CSF-1) in immortalised first trimester trophoblast cells. We show that a specific CSF-1R kinase inhibitor, GW2580, abolishes CSF-1 induced trophoblast cell proliferation and migration and can be cytotoxic. We then demonstrate the expression of CSF-1R and CSF-1 in the cytotrophoblast and syncytiotrophoblast within ectopic implantation sites from women with EP. Our data suggests that CSF-1 is involved in the survival and proliferation of trophoblast cells in EP. This suggests that pharmacological disruption of CSF-1/CSF-1R signaling axis could be the basis of a new therapeutic for EP.


Subject(s)
Molecular Targeted Therapy , Pregnancy, Ectopic/drug therapy , Pregnancy, Ectopic/pathology , Receptor, Macrophage Colony-Stimulating Factor/metabolism , Signal Transduction/drug effects , Cell Death/drug effects , Cell Line , Cell Movement/drug effects , Female , Gene Expression Regulation/drug effects , Humans , Macrophage Colony-Stimulating Factor/metabolism , Pregnancy , Pregnancy, Ectopic/metabolism , Receptor, Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Trophoblasts/drug effects , Trophoblasts/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...