Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 21920, 2023 12 08.
Article in English | MEDLINE | ID: mdl-38081907

ABSTRACT

Earthworms are known to stimulate soil greenhouse gas (GHG) emissions, but the majority of previous studies have used simplified model systems or lacked continuous high-frequency measurements. To address this, we conducted a 2-year study using large lysimeters (5 m2 area and 1.5 m soil depth) in an ecotron facility, continuously measuring ecosystem-level CO2, N2O, and H2O fluxes. We investigated the impact of endogeic and anecic earthworms on GHG emissions and ecosystem water use efficiency (WUE) in a simulated agricultural setting. Although we observed transient stimulations of carbon fluxes in the presence of earthworms, cumulative fluxes over the study indicated no significant increase in CO2 emissions. Endogeic earthworms reduced N2O emissions during the wheat culture (- 44.6%), but this effect was not sustained throughout the experiment. No consistent effects on ecosystem evapotranspiration or WUE were found. Our study suggests that earthworms do not significantly contribute to GHG emissions over a two-year period in experimental conditions that mimic an agricultural setting. These findings highlight the need for realistic experiments and continuous GHG measurements.


Subject(s)
Greenhouse Gases , Oligochaeta , Animals , Greenhouse Gases/analysis , Carbon Dioxide/analysis , Ecosystem , Nitrous Oxide , Soil , Crop Production , Methane/analysis
2.
Glob Chang Biol ; 27(7): 1387-1407, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33274502

ABSTRACT

Ecosystems integrity and services are threatened by anthropogenic global changes. Mitigating and adapting to these changes require knowledge of ecosystem functioning in the expected novel environments, informed in large part through experimentation and modelling. This paper describes 13 advanced controlled environment facilities for experimental ecosystem studies, herein termed ecotrons, open to the international community. Ecotrons enable simulation of a wide range of natural environmental conditions in replicated and independent experimental units while measuring various ecosystem processes. This capacity to realistically control ecosystem environments is used to emulate a variety of climatic scenarios and soil conditions, in natural sunlight or through broad-spectrum lighting. The use of large ecosystem samples, intact or reconstructed, minimizes border effects and increases biological and physical complexity. Measurements of concentrations of greenhouse trace gases as well as their net exchange between the ecosystem and the atmosphere are performed in most ecotrons, often quasi continuously. The flow of matter is often tracked with the use of stable isotope tracers of carbon and other elements. Equipment is available for measurements of soil water status as well as root and canopy growth. The experiments ran so far emphasize the diversity of the hosted research. Half of them concern global changes, often with a manipulation of more than one driver. About a quarter deal with the impact of biodiversity loss on ecosystem functioning and one quarter with ecosystem or plant physiology. We discuss how the methodology for environmental simulation and process measurements, especially in soil, can be improved and stress the need to establish stronger links with modelling in future projects. These developments will enable further improvements in mechanistic understanding and predictive capacity of ecotron research which will play, in complementarity with field experimentation and monitoring, a crucial role in exploring the ecosystem consequences of environmental changes.


Subject(s)
Ecosystem , Environmental Science , Biodiversity , Ecology , Soil
3.
Sci Rep ; 10(1): 5915, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32246067

ABSTRACT

Studying the ecology of photosynthetic microeukaryotes and prokaryotic cyanobacterial communities requires molecular tools to complement morphological observations. These tools rely on specific genetic markers and require the development of specialised databases to achieve taxonomic assignment. We set up a reference database, called µgreen-db, for the 23S rRNA gene. The sequences were retrieved from generalist (NCBI, SILVA) or Comparative RNA Web (CRW) databases, in addition to a more original approach involving recursive BLAST searches to obtain the best possible sequence recovery. At present, µgreen-db includes 2,326 23S rRNA sequences belonging to both eukaryotes and prokaryotes encompassing 442 unique genera and 736 species of photosynthetic microeukaryotes, cyanobacteria and non-vascular land plants based on the NCBI and AlgaeBase taxonomy. When PR2/SILVA taxonomy is used instead, µgreen-db contains 2,217 sequences (399 unique genera and 696 unique species). Using µgreen-db, we were able to assign 96% of the sequences of the V domain of the 23S rRNA gene obtained by metabarcoding after amplification from soil DNA at the genus level, highlighting good coverage of the database. µgreen-db is accessible at http://microgreen-23sdatabase.ea.inra.fr.


Subject(s)
Cyanobacteria/genetics , DNA, Environmental/genetics , Databases, Nucleic Acid , Eukaryota/genetics , RNA, Ribosomal, 23S/genetics , Cyanobacteria/classification , DNA Barcoding, Taxonomic , DNA, Environmental/isolation & purification , Eukaryota/classification , Photosynthesis , Plastids/genetics , Soil/chemistry
4.
Soil Biol Biochem ; 115: 371-382, 2017 12.
Article in English | MEDLINE | ID: mdl-29200510

ABSTRACT

The stable oxygen isotope composition of atmospheric CO2 and the mixing ratio of carbonyl sulphide (OCS) are potential tracers of biospheric CO2 fluxes at large scales. However, the use of these tracers hinges on our ability to understand and better predict the activity of the enzyme carbonic anhydrase (CA) in different soil microbial groups, including phototrophs. Because different classes of the CA family (α, ß and γ) may have different affinities to CO2 and OCS and their expression should also vary between different microbial groups, differences in the community structure could impact the 'community-integrated' CA activity differently for CO2 and OCS. Four soils of different pH were incubated in the dark or with a diurnal cycle for forty days to vary the abundance of native phototrophs. Fluxes of CO2, CO18O and OCS were measured to estimate CA activity alongside the abundance of bacteria, fungi and phototrophs. The abundance of soil phototrophs increased most at higher soil pH. In the light, the strength of the soil CO2 sink and the CA-driven CO2-H2O isotopic exchange rates correlated with phototrophs abundance. OCS uptake rates were attributed to fungi whose abundance was positively enhanced in alkaline soils but only in the presence of increased phototrophs. Our findings demonstrate that soil-atmosphere CO2, OCS and CO18O fluxes are strongly regulated by the microbial community structure in response to changes in soil pH and light availability and supports the idea that different members of the microbial community express different classes of CA, with different affinities to CO2 and OCS.

5.
New Phytol ; 215(3): 965-976, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28467665

ABSTRACT

Carbonyl sulphide (COS) is a potential tracer of gross primary productivity (GPP), assuming a unidirectional COS flux into the vegetation that scales with GPP. However, carbonic anhydrase (CA), the enzyme that hydrolyses COS, is expected to be light independent, and thus plants without stomata should continue to take up COS in the dark. We measured net CO2 (AC ) and COS (AS ) uptake rates from two astomatous bryophytes at different relative water contents (RWCs), COS concentrations, temperatures and light intensities. We found large AS in the dark, indicating that CA activity continues without photosynthesis. More surprisingly, we found a nonzero COS compensation point in light and dark conditions, indicating a temperature-driven COS source with a Q10 (fractional change for a 10°C temperature increase) of 3.7. This resulted in greater AS in the dark than in the light at similar RWC. The processes underlying such COS emissions remain unknown. Our results suggest that ecosystems dominated by bryophytes might be strong atmospheric sinks of COS at night and weaker sinks or even sources of COS during daytime. Biotic COS production in bryophytes could result from symbiotic fungal and bacterial partners that could also be found on vascular plants.


Subject(s)
Bryophyta/metabolism , Gases/metabolism , Light , Sulfur Oxides/metabolism , Water/metabolism , Bryophyta/radiation effects , Carbohydrates/analysis , Darkness , Desiccation , Plant Leaves/metabolism , Plant Leaves/radiation effects , Plant Proteins/metabolism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...