Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Invest New Drugs ; 39(3): 736-746, 2021 06.
Article in English | MEDLINE | ID: mdl-33403501

ABSTRACT

Chronic myeloid leukemia (CML) is successfully treated with BCR-ABL1 tyrosine kinase inhibitors, but a significant percentage of patients develop resistance. Insulin receptor substrate 1 (IRS1) has been shown to constitutively associate with BCR-ABL1, and IRS1-specific silencing leads to antineoplastic effects in CML cell lines. Here, we characterized the efficacy of NT157, a pharmacological inhibitor of IGF1R-IRS1/2, in CML cells and observed significantly reduced cell viability and proliferation, accompanied by induction of apoptosis. In human K562 cells and in murine Ba/F3 cells, engineered to express either wild-type BCR-ABL1 or the imatinib-resistant BCR-ABL1T315I mutant, NT157 inhibited BCR-ABL1, IGF1R, IRS1/2, PI3K/AKT/mTOR, and STAT3/5 signaling, increased CDKN1A, FOS and JUN tumor suppressor gene expression, and reduced MYC and BCL2 oncogenes. NT157 significantly reduced colony formation of human primary CML cells with minimal effect on normal hematopoietic cells. Exposure of primary CML cells harboring BCR-ABL1T315I to NT157 resulted in increased apoptosis, reduced cell proliferation and decreased phospho-CRKL levels. In conclusion, NT157 has antineoplastic effects on BCR-ABL1 leukemogenesis, independent of T315I mutational status.


Subject(s)
Antineoplastic Agents/therapeutic use , Insulin Receptor Substrate Proteins/antagonists & inhibitors , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Protein Kinase Inhibitors/therapeutic use , Pyrogallol/analogs & derivatives , Receptor, IGF Type 1/antagonists & inhibitors , Sulfonamides/therapeutic use , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Disease Models, Animal , Drug Resistance, Neoplasm/drug effects , Fusion Proteins, bcr-abl/antagonists & inhibitors , Gene Expression Regulation, Neoplastic , Humans , Imatinib Mesylate/pharmacology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Mice , Protein Kinase Inhibitors/pharmacology , Pyrogallol/pharmacology , Pyrogallol/therapeutic use , Sulfonamides/pharmacology
2.
Cancer Cell ; 36(4): 431-443.e5, 2019 10 14.
Article in English | MEDLINE | ID: mdl-31543464

ABSTRACT

BCR-ABL1 point mutation-mediated resistance to tyrosine kinase inhibitor (TKI) therapy in Philadelphia chromosome-positive (Ph+) leukemia is effectively managed with several approved drugs, including ponatinib for BCR-ABL1T315I-mutant disease. However, therapy options are limited for patients with leukemic clones bearing multiple BCR-ABL1 mutations. Asciminib, an allosteric inhibitor targeting the myristoyl-binding pocket of BCR-ABL1, is active against most single mutants but ineffective against all tested compound mutants. We demonstrate that combining asciminib with ATP site TKIs enhances target inhibition and suppression of resistant outgrowth in Ph+ clinical isolates and cell lines. Inclusion of asciminib restores ponatinib's effectiveness against currently untreatable compound mutants at clinically achievable concentrations. Our findings support combining asciminib with ponatinib as a treatment strategy for this molecularly defined group of patients.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Drug Resistance, Neoplasm/drug effects , Fusion Proteins, bcr-abl/antagonists & inhibitors , Imidazoles/pharmacology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Niacinamide/analogs & derivatives , Pyrazoles/pharmacology , Pyridazines/pharmacology , Allosteric Regulation/drug effects , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Binding Sites/drug effects , Binding Sites/genetics , Cell Line, Tumor/transplantation , Disease Models, Animal , Drug Resistance, Neoplasm/genetics , Female , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Humans , Imidazoles/therapeutic use , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Mice , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Targeted Therapy/methods , Mutation , Niacinamide/pharmacology , Niacinamide/therapeutic use , Primary Cell Culture , Pyrazoles/therapeutic use , Pyridazines/therapeutic use
3.
Cancer Res ; 79(18): 4744-4753, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31311809

ABSTRACT

Although the use of ATP-competitive tyrosine kinase inhibitors of oncoprotein BCR-ABL1 has enabled durable responses in patients with chronic myeloid leukemia (CML), issues of drug resistance and residual leukemic stem cells remain. To test whether the degradation of BCR-ABL1 kinase could offer improved response, we developed a series of proteolysis-targeting chimera (PROTAC) that allosterically target BCR-ABL1 protein and recruit the E3 ligase Von Hippel-Lindau, resulting in ubiquitination and subsequent degradation of the oncogenic fusion protein. In both human CML K562 cells and murine Ba/F3 cells expressing BCR-ABL1, lead compound GMB-475 induced rapid proteasomal degradation and inhibition of downstream biomarkers, such as STAT5, and showed increased sensitivity compared with diastereomeric controls lacking degradation activity. Notably, GMB-475 inhibited the proliferation of certain clinically relevant BCR-ABL1 kinase domain point mutants and further sensitized Ba/F3 BCR-ABL1 cells to inhibition by imatinib, while demonstrating no toxicity toward Ba/F3 parental cells. Reverse phase protein array analysis suggested additional differences in levels of phosphorylated SHP2, GAB2, and SHC associated with BCR-ABL1 degradation. Importantly, GMB-475 reduced viability and increased apoptosis in primary CML CD34+ cells, with no effect on healthy CD34+ cells at identical concentrations. GMB-475 degraded BCR-ABL1 and reduced cell viability in primary CML stem cells. Together, these findings suggest that combined BCR-ABL1 kinase inhibition and protein degradation may represent a strategy to address BCR-ABL1-dependent drug resistance, and warrant further investigation into the eradication of persistent leukemic stem cells, which rely on neither the presence nor the activity of the BCR-ABL1 protein for survival. SIGNIFICANCE: Small-molecule-induced degradation of BCR-ABL1 in CML provides an advantage over inhibition and provides insights into CML stem cell biology. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/79/18/4744/F1.large.jpg.


Subject(s)
Fusion Proteins, bcr-abl/antagonists & inhibitors , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Neoplastic Stem Cells/drug effects , Protein Kinase Inhibitors/pharmacology , Proteolysis/drug effects , Animals , Apoptosis/drug effects , Cell Proliferation/drug effects , Drug Resistance, Neoplasm , Humans , K562 Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Mice , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Protein Array Analysis , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...