Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Tissue Eng Regen Med ; 12(2): e1068-e1075, 2018 02.
Article in English | MEDLINE | ID: mdl-28371514

ABSTRACT

Surgical repair of caustic oesophageal injuries with autologous gastrointestinal segments is often associated with dysmotility, dysphagia and donor site morbidity, and therefore alternative graft options are needed. Bilayer silk fibroin (BLSF) scaffolds were assessed for their ability to support functional restoration of damaged oesophageal tissues in a rat model of onlay oesophagoplasty. Transient exposure of isolated oesophageal segments with 40% NaOH led to corrosive oesophagitis and a 91% reduction in the luminal cross-sectional area of damaged sites. Oesophageal repair with BLSF matrices was performed in injured rats (n = 27) as well as a nondiseased cohort (n = 12) for up to 2 months after implantation. Both implant groups exhibited >80% survival rates, displayed similar degrees of weight gain, and were capable of solid food consumption following a 3-day liquid diet. End-point µ-computed tomography of repaired sites demonstrated a 4.5-fold increase in luminal cross-sectional area over baseline injury levels. Reconstructed oesophageal conduits from damaged and nondiseased animals produced comparable contractile responses to KCl and electric field stimulation while isoproterenol generated similar tissue relaxation responses. Histological and immunohistochemical evaluations of neotissues from both implant groups showed formation of a stratified, squamous epithelium with robust cytokeratin expression as well as skeletal and smooth muscle layers positive for contractile protein expression. In addition, synaptophysin positive neuronal junctions and vessels lined with CD31 positive endothelial cells were also observed at graft sites in each setting. These results provide preclinical validation for the use of BLSF scaffolds in reconstructive strategies for oesophageal repair following caustic injury.


Subject(s)
Esophagus/injuries , Esophagus/pathology , Fibroins/pharmacology , Tissue Scaffolds/chemistry , Wound Healing/drug effects , Animals , Caustics , Disease Models, Animal , Esophagus/drug effects , Female , Rats, Sprague-Dawley
2.
J Tissue Eng Regen Med ; 12(2): e894-e904, 2018 02.
Article in English | MEDLINE | ID: mdl-28084044

ABSTRACT

Partial circumferential, full thickness defects of the esophagus can occur as a result of organ perforation or tumour resection, or during surgical reconstruction of strictured segments. Complications associated with autologous tissue flaps conventionally utilized for defect repair necessitate the development of new graft options. In this study, bi-layer silk fibroin (BLSF) scaffolds were investigated for their potential to support functional restoration of partial circumferential defects in a porcine model of esophageal repair. Onlay thoracic esophagoplasty with BLSF matrices (~3 x 1.5 cm) was performed in adult swine (N = 6) for 3 months of implantation. All animals receiving BLSF grafts survived with no complications and were capable of solid food consumption. Radiographic esophagrams revealed preservation of organ continuity with no evidence of contrast extravasation or strictures. Fluoroscopic analysis demonstrated peristaltic contractions. Ex vivo tissue bath studies displayed contractile responses to carbachol, electric field stimulation, and KCl while isoproterenol produced tissue relaxation. Histological and immunohistochemical evaluations of neotissues showed a stratified, squamous epithelium, a muscularis mucosa composed of smooth muscle bundles, and a muscularis externa organized into circular and longitudinal layers, with a mix of striated skeletal muscle fascicles interspersed with smooth muscle. De novo innervation and vascularization were observed throughout the graft sites and consisted of synaptophysin-positive neuronal boutons and vessels lined with CD31-positive endothelial cells. The results of this study demonstrate that BLSF scaffolds can facilitate constructive remodeling of partial circumferential, full thickness esophageal defects in a large animal model. Copyright © 2017 John Wiley & Sons, Ltd.


Subject(s)
Esophagoplasty , Fibroins/pharmacology , Models, Biological , Regeneration/drug effects , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Swine
3.
Stem Cell Reports ; 9(6): 2005-2017, 2017 12 12.
Article in English | MEDLINE | ID: mdl-29173895

ABSTRACT

The bladder urothelium functions as a urine-blood barrier and consists of basal, intermediate, and superficial cell populations. Reconstructive procedures such as augmentation cystoplasty and focal mucosal resection involve localized surgical damage to the bladder wall whereby focal segments of the urothelium and underlying submucosa are respectively removed or replaced and regeneration ensues. We demonstrate using lineage-tracing systems that urothelial regeneration following augmentation cystoplasty with acellular grafts exclusively depends on host keratin 5-expressing basal cells to repopulate all lineages of the de novo urothelium at implant sites. Conversely, repair of focal mucosal defects not only employs this mechanism, but in parallel host intermediate cell daughters expressing uroplakin 2 give rise to themselves and are also contributors to superficial cells in neotissues. These results highlight the diversity of urothelial regenerative responses to surgical injury and may lead to advancements in bladder tissue engineering approaches.


Subject(s)
Keratin-5/genetics , Regeneration/genetics , Urinary Bladder/growth & development , Uroplakin II/genetics , Urothelium/growth & development , Animals , Cell Differentiation/genetics , Cell Lineage/genetics , Cell Tracking/methods , Gene Expression Regulation, Developmental/genetics , Humans , Intraoperative Complications/metabolism , Intraoperative Complications/pathology , Mice , Tissue Engineering , Urinary Bladder/injuries , Urinary Bladder/metabolism , Urine/physiology , Urothelium/injuries , Urothelium/metabolism
4.
Mol Cell Neurosci ; 74: 58-70, 2016 07.
Article in English | MEDLINE | ID: mdl-26947098

ABSTRACT

Mammalian olfaction depends on the development of specialized olfactory sensory neurons (OSNs) that each express one odorant receptor (OR) protein from a large family of OR genes encoded in the genome. The lysine-specific demethylase-1 (LSD1) protein removes activating H3K4 or silencing H3K9 methylation marks at gene promoters and is required for proper OR regulation. We show that LSD1 protein exhibits variable organization within nuclei of developing OSNs, and tends to consolidate into a single dominant compartment at the edges of chromocenters within nuclei of early post-mitotic cells of the mouse olfactory epithelium (MOE). Using an immortalized cell line derived from developing olfactory placode, we show that consolidation of LSD1 appears to be cell-cycle regulated, with a peak occurrence in early G1. LSD1 co-compartmentalizes with CoREST, a protein known to collaborate with LSD1 to carry out a variety of chromatin-modifying functions. We show that LSD1 compartments co-localize with 1-3 OR loci at the exclusion of most OR genes, and commonly associate with Lhx2, a transcription factor involved in OR regulation. Together, our data suggests that LSD1 is sequestered into a distinct nuclear space that might restrict a histone-modifying function to a narrow developmental time window and/or range of OR gene targets.


Subject(s)
Chromatin/metabolism , G1 Phase , Histone Demethylases/metabolism , Olfactory Receptor Neurons/metabolism , Animals , Cell Line , Cell Lineage , Cell Nucleus/metabolism , Co-Repressor Proteins , Histone Demethylases/genetics , Histones/metabolism , Mice , Mitosis , Nerve Tissue Proteins/metabolism , Olfactory Receptor Neurons/cytology , Protein Binding , Receptors, Odorant/genetics , Repressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL